

 MEAU – Engineering Group

Version 1.1

Mitsubishi Electric

CNC Software Interface Module (MEL-SIM)

i MEAU – Engineering Group

Content

1 Introduction ... 1

2 Overview .. 1

3 The MEL-SIM API Architecture ... 2

4 The NCMachine Class ... 3

5 The NCMachine Class Properties ... 4

5.1 Machine Programs .. 4

5.1.1. Programs.Load Method ... 5

5.1.2. ExecutionStatus Property .. 5

5.1.3. Programs Indexer ... 5

5.2 BitSelection .. 6

5.3 Auxiliary Axes .. 7

5.4 Feed Rates ... 8

5.5 Machine Axes .. 9

5.5.1. Axis Servos ... 10

5.5.2. Axis Positions ... 11

5.6 Machine Functions .. 12

5.7 Controller I/O .. 13

5.7.1. Analog Input and Output ... 13

5.7.2. PLC I/O ... 14

5.8 Machine Operation ... 15

5.9 Machine Spindles .. 16

5.10 Machine Times .. 17

5.11 Machine Tool Offsets .. 18

5.12 Machine Variables .. 19

5.13 Workpiece Offsets .. 20

5.14 Reference Position Return Values .. 21

5.15 Simple Properties.. 21

5.15.1. CommTimeout ... 21

5.15.2. IPAddress ... 21

5.15.3. NCNumber ... 21

6 NCMachine Methods ... 22

6.1 Machine Version Information ... 22

6.2 Machine Alarms ... 23

ii MEAU – Engineering Group

6.3 Network Parameters ... 24

6.4 Other Machine Parameters ... 25

7 Machine File Management .. 26

iii MEAU – Engineering Group

Document Management Information

Date Version No. Document Name Revision Revised By

January 3, 2013 1.0 MELSIM Release for internal review MEAU Custom Solutions Center

April 8, 2013 1.1 MELSIM Formal Release MEAU Engineering Group

 MELPT-ASM User’s Manual

1 MEAU – Engineering Group

1 Introduction
Mitsubishi Electric CNC Software Interface Module (MEL-SIM) provides connectivity between a third-party operator

interface frontend running on a Microsoft Windows operating system and a Mitsubishi Electric M70 or M700 CNC.

The key functions of MEL-SIM are:

• providing connectivity to Mitsubishi CNC models M70 or M700 through the use of Mitsubishi APIs in the

M70/M700 Series Custom API Library;

• transferring commands from the third-party operator interface to the CNC for execution;

• providing CNC status, data and parameters to the third-party operator interface for display and other uses.

The objective is that any machine OEM who has a PC-based (i.e. running on Microsoft Windows Operating System

using .NET and/or COM components) operator interface front end can utilize MEL-SIM to connect the front end to a

Mitsubishi M70/M700 for machine applications.

The purpose of this document is to provide the description of the MEL-SIM .NET Application Programmer’s Interface (API)

for the Mitsubishi M700 Machine Controller so that a user can develop the necessary front end .NET application to

interface with the Mitsubishi CNC for specific applications.

It is assumed that the users of MEL-SIM are familiar with the .NET environment and .NET application development as well

as with CNC operations in general.

2 Overview
MEL-SIM is a Microsoft .NET application and is capable of running on Windows XP as well as 64 or 32 bit Windows 7

environment. MEL-SIM utilizes the Mitsubishi M70/M700 Custom NCAPI’s to perform the actual low-level communicate

with the CNC hardware and acts as a .NET wrapper to enable the Mitsubishi M700 Custom API Library to execute in

the .NET environment.

Thus MEL-SIM will only function properly when the Mitsubishi M700 Custom API Library is present on the same computer

where MEL-SIM is loaded. The Mitsubishi M70/M700 Custom API Library will need to be installed separately by the user.

MEL-SIM is a provided as a dynamic-link library file (i.e. a dll file). A user simply adds the dll file as a reference to his or her

own application and deploys it with his or her completed application.

MEL-SIM contains a generic software interface with specific APIs (MEL-SIM APIs) that can be used by applications to

retrieve information from and send commands to the CNC. The MEL-SIM API set isolates the customer’s .NET applications

from interfacing with the M700 Custom API Library directly and enables customers’ existing Windows Applications to be

used with minimal modifications.

MEL-SIM supports the following functions and capabilities:

 MELPT-ASM User’s Manual

2 MEAU – Engineering Group

• Configuring the CNC through MEL-SIM to perform desired functions;

• Transferring commands to the CNC to start and stop appropriate CNC operations;

• Receiving status and error data and/or messages and providing them to the OEM applications for processing

and/or display.

• Downloading programs and profiles to the CNC controllers.

3 The MEL-SIM API Architecture
The MEL-SIM is an API centered on a single object, the NCMachine. A user application should create one and only one

NCMachine instance and use the methods and properties of the instance for accessing the desired NC system.

Generally speaking, the NCMachine class exposes a wide array of properties to provide a logical, type-safe mapping to NC

parameter values that are typically of interest to an application programmer. “Property Read” operations are translated to

real-time (i.e. not cached) calls to the M70/M700 Custom APIs to read parameters and values from the CNC, and these

parameters and values are rarely cached or pre-fetched.

IMPORTANT NOTE

It is critical to understand the capabilities of the target NC machine and verify that all hardware is

connected and operational before using the MEL-SIM API. Using the MEL-SIM API without ensuring

proper connection and operation (e.g. querying servo properties with no physical servos connected) can

cause the M700 Custom API subsystem to deadlock in some cases. This will require a reset of the NC, the

PC running the application, or both.

 MELPT-ASM User’s Manual

3 MEAU – Engineering Group

4 The NCMachine Class
The NCMachine class is the main entry point to the MEL-SIM API. A single instance of the NCMachine should be created

and this one instance should be used for all application access to the target NC. Having multiple instances in one program is

not a tested or supported scenario.

The NCMachine instance is created by simply passing the target NC number into the NCMachine constructor.

NCMachine machine = new NCMachine(1);

 MELPT-ASM User’s Manual

4 MEAU – Engineering Group

5 The NCMachine Class Properties
This section describes the Properties of the NCMachine class.

5.1 Machine Programs

The NCMachine.Programs Property provides access to the in-memory GCode programs of the controller. In-memory

programs can be loaded, iterated and properties such as “last write time” and “size” can be queried. In addition,

information such as the path, active main and active sub can be queried for the current and last program to be

executed.

 MELPT-ASM User’s Manual

5 MEAU – Engineering Group

5.1.1. Programs.Load Method

The Programs property contains a Load method, which can be used to load new Programs into memory from the

NC File System (covered in Section 7 in this document). Simply call Load with the full path to the program to load.

5.1.2. ExecutionStatus Property

The Programs Property contains two sub-properties: Current and Last. These properties contain information about

the execution status of the respective program such as its main program, sub program and path.

5.1.3. Programs Indexer

The Programs list contains indexers by either index number or program name, allowing an application to query

information about any given program in memory, such as the program's current GCode, Length, Name and Path.

The indexer can also be used to Create, Delete, Rename or Refresh a given Program.

 MELPT-ASM User’s Manual

6 MEAU – Engineering Group

5.2 BitSelection

The NCMachine.BitSelection Property provides access to the NC Controller's Bit Selection parameters (6401 through

6448). Bit Selection parameters are accessed by either the parameter number or by zero-based index.

Following is an example of querying Parameter 6401 by Parameter number:

var value = machine.BitSelection[6401];

This is the functional equivalent of querying the same information by index zero:

var value = machine.BitSelection[0];

 MELPT-ASM User’s Manual

7 MEAU – Engineering Group

5.3 Auxiliary Axes

The NCMachine.AuxiliaryAxes Property provides access to all Auxiliary Axes of the Controller, if they exist. Auxiliary

axes are more limited in the amount of information they can provide compares to an Axis in the Axes collection.

Following is an example of querying the manual operation speed of the first Auxiliary axis:

var speed = machine.AuxiliaryAxes[0].ManualOperationSpeed;

 MELPT-ASM User’s Manual

8 MEAU – Engineering Group

5.4 Feed Rates

The NCMachine.Feedrates Property provides read access to the feedrate parameters of the Controller.

Here is an example of querying the manual feedrate of the selected Controller:

var feedRate = m.Feedrates.ManualRate;

 MELPT-ASM User’s Manual

9 MEAU – Engineering Group

5.5 Machine Axes

The NCMachine.Axes collection Property and its sub-Properties provide access to a large amount of information on the

axes of the controller. Each physical Axis has a corresponding LinearAxis or RotaryAxis in the collection that can be

referenced by 0-based axis number, or by case-insensitive axis name.

Here is an example of querying a direct property of an Axis:

RotaryDirection direction = ((RotaryAxis)machine.Axes["X"]).Direction;

 MELPT-ASM User’s Manual

10 MEAU – Engineering Group

5.5.1. Axis Servos

Each Axis in the Axes collection contains a Servo class that provides information specific to the physical servo for

that Axis.

Here is an example of querying an Axis Servo Property:

var servoLoad = machine.Axes["A"].Servo.LoadPercent;

 MELPT-ASM User’s Manual

11 MEAU – Engineering Group

5.5.2. Axis Positions

Each Axis in the Axes collection contains a Positions class that provides positional information specific to that Axis

Here is an example of querying an Axis Position Property:

var currentPosition = machine.Axes["A"].Positions.Current;

 MELPT-ASM User’s Manual

12 MEAU – Engineering Group

5.6 Machine Functions

The NCMachine.Functions Property contains MSTB information about the NC.

Here is an example of querying MSTB information from the connected NC:

double m3 = machine.Functions.M[3];

 MELPT-ASM User’s Manual

13 MEAU – Engineering Group

5.7 Controller I/O

5.7.1. Analog Input and Output

Access to Controller analogs, both input and output, is done through methods on the

NCMachine.IO.Controler.Analogs Property.

 Here are examples of both reading and writing Controller analogs:

double ai1 = machine.IO.Controller.Analogs.ReadInput(Analogs.InputPort.AI1);

machine.IO.Controller.Analogs.SetOutput(Analogs.OutputPort.AO2, 3.14);

 MELPT-ASM User’s Manual

14 MEAU – Engineering Group

5.7.2. PLC I/O

Access to PLC I/O, both input and output, is done through methods and properties on the NCMachine.IO.PLC

Property.

Here is an example of reading a PLC switch:

bool switch16isOn = machine.IO.PLC.Switches[16];

Here is an example of writing a 16-bit value to register 8 of Device D:

machine.IO.PLC.Write(IODevice.D, 8, (short)3);

Here is an example of reading an 8-bit value from register 1 of Device M:

machine.IO.PLC.ReadByte(IODevice.M, 1);

 MELPT-ASM User’s Manual

15 MEAU – Engineering Group

5.8 Machine Operation

Machine operation status values can be queried through sub-properties of the NCMachine.Operation Property.

Here is an example of determining if the PLC is currently running:

var plcIsRunning = machine.Operation.PLCRunning;

 MELPT-ASM User’s Manual

16 MEAU – Engineering Group

5.9 Machine Spindles

The NCMachine.Spindles collection Property provides access to information related to machine spindles. Each physical

spindle has a corresponding Spindle in the collection that can be referenced by 0-based spindle number.

Here is an example of querying a direct property of a Spindle:

var firstSpindleFeedrate = machine.Spindles[0].Feedrate;

Spindle errors are available through the Errors property of the NCMachine.Spindle. Here is an example of reading a

Spindle error:

string error = machine.Spindles[0].Errors.Critical;

 MELPT-ASM User’s Manual

17 MEAU – Engineering Group

5.10 Machine Times

Machine-related times can be queried through sub-properties of the NCMachine.Times property of the NCMachine.

Here is an example of querying the current machine time (clock):

var machineTime = machine.Times.MachineDateTime;

 MELPT-ASM User’s Manual

18 MEAU – Engineering Group

5.11 Machine Tool Offsets

Machine tool offsets are available through sub-properties of the NCMachine.Tool Property.

Here is an example of querying the Length offset for index 0:

var lengthOffset0 = machine.Tool.Offsets[0].Length;

 MELPT-ASM User’s Manual

19 MEAU – Engineering Group

5.12 Machine Variables

Read access to Local, System and Common variables is available through sub-properties of the NCMachine.Variables

property.

Here is an example of reading system variable 101:

double system101 = machine.Variables.System[101];

 MELPT-ASM User’s Manual

20 MEAU – Engineering Group

5.13 Workpiece Offsets

Workpiece offsets can be accessed through sub-properties of the NCMachine.Workpiece property. Offsets are

accessed by offset name and axis name.

Here is an example of reading the G55 Workpiece offset on the X axis:

double xOffsetG55 = machine.Workpiece.Offsets.G55["X"];

 MELPT-ASM User’s Manual

21 MEAU – Engineering Group

5.14 Reference Position Return Values

Common reference position return values can be accessed through sub-properties of the

NCMachine.ReferencePositionReturnValues property.

Here is an example of reading the reference position offset:

var offset = machine.ReferencePositionReturnValue.Offset;

5.15 Simple Properties

The NCMachine class also contains some simple properties, meaning they are properties that do not contain sub-

properties or methods, but instead provide direct information about the NCMachine itself.

5.15.1. CommTimeout

The CommTimeout is the current setting for the communication timeout for the NC API. This can be set or read.

Following is an example illustrating the use of CommTimeout.

var timeout = machine.CommTimeout;
timeout += 10;

machine.CommTimeout = timeout;

5.15.2. IPAddress

The IPAddress is the current TCP/IP address of the current NCMachine. It can be set or read. Following is an

example illustrating the use of IPAddress.

var address = IPAddress.Parse(“192.168.10.200”);

machine.IPAddress = address;
Debug.WriteLine(machine.IPAddress.ToString());

5.15.3. NCNumber

The NCNumber is the NC index number passed into the construction of the NCMachine class instance (typically a

value of '1'). This property is read-only. Following is an example illustrating the use of NCNumber.

var machine = new NCMachine(1);

var machineNumber = machine.NCNumber;

 MELPT-ASM User’s Manual

22 MEAU – Engineering Group

6 NCMachine Methods

6.1 Machine Version Information

Version information about machine subsystems can be queried by calling the GetVersionInfo method of the

NCMachine.

Here is an example of reading the PLC version:

var plcVersion = machine.GetVersionInfo().PLCVersion;

 MELPT-ASM User’s Manual

23 MEAU – Engineering Group

6.2 Machine Alarms

General NC Alarm information can be queried using the NCMachine.GetAlarms method. GetAlarms returns an array of

all current alarms, in order of alarm priority.

Here is an example of retrieving the message for the first (highest priority) alarm in the system.

var firstAlarmMessage = machine.GetAlarms()[0].Message;

 MELPT-ASM User’s Manual

24 MEAU – Engineering Group

6.3 Network Parameters

Machine network parameters can be read by calling the GetEthernetInfo method of the NCMachine class.

Here is an example of querying the machine’s IP Address:

var ncIP = machine.GetEthernetInfo().LocalIPAddress;

 MELPT-ASM User’s Manual

25 MEAU – Engineering Group

6.4 Other Machine Parameters

The CNC API has type-safe named coverage for a large number of commonly accessed machine parameters, but it does

not directly cover all parameters supported by all machines.

However, any parameter not directly covered by a property beneath the NCMachine class can still be accessed using

the MEL-SIM API using the one of the NCMachine ReadParameterXxx and/or WriteParameterXxx methods. These

methods follow the following general form.

For a read operation:

public int ReadParameterXxx(Section section, int subsection, int axisMask, int system)

For a write operation:

public void WriteParameterInt(Section section, int subsection, int value, bool forceWrite)

Where:

• “Xxx” is one of:

o Byte (8-bit)

o Short (16-bit)

o Int (32-bit)

o Double (floating point) or String

• section is the enumeration value corresponding to the parameter Section outlined in the M700 Custom API

Library Functions document.

• subsection is the numeric value corresponding to the parameter Section outlined in the M700 Custom API

Library Functions document.

• axisMask is a mask of the axis to be affected (1 << axisNumber) as described in the M700 Custom API Library

Functions document.

• system is a value of ‘1’

• value is the value to write to the parameter (for write operations)

• forcedWrite determines if the write is considered a “forced” write as described in the M700 Custom API

Library Functions document.

 MELPT-ASM User’s Manual

26 MEAU – Engineering Group

7 Machine File Management
File management functions are managed by using the NCFile class. The file management functions are beyond, but still

including in-memory Programs covered by the NCMachine.Programs property. The NCFile is structured to follow the same

conventions as standard .NET file I/O and should be familiar to any developer familiar with standard file manipulation

in .NET.

Stream-based operations are available through the NCStream returned by calls to the NCFile.Open method:

public void NCFileCopyByStream()
{
 var machine = new NCMachine(1);
 var buffer = new byte[10000];
 int pos = 0;
 using (var stream = NCFile.Open(machine, "\\PRG\\USER\\111", FileMode.Open, FileAccess.Read))
 {
 int read = 0;
 do
 {

 read = stream.Read(buffer, pos, 512);
 pos += read;
 } while (read > 0);
 }

 using (var stream = NCFile.Open(machine, "\\PRG\\USER\\111y", FileMode.Create, FileAccess.ReadWrite))
 {
 stream.Write(buffer, 0, pos);
 stream.Flush();
 }
}

Simplified methods for bulk reads and writes, just like in the .NET File class, are also available:

public void NCFileCopy()
{
 var machine = new NCMachine(1);
 var contentA = NCFile.ReadAllText(machine, "\\PRG\\USER\\111");

 NCFile.WriteAllText(machine, "\\PRG\\USER\\111tmp", contentA);
}

