MR-C Servo
SERVOMOTORS & AMPLIFIERS

Step Up to Servo Performance

MITSUBISHI ELECTRIC

The MR-C brushless servo, in a handy super-compact size, is the culmination of Mitsubishi servo technology.

The servo amplifier achieves high performance in an unprecedented compact body, only 40 millimeters wide and 130 millimeters tall. Small but powerful, it comes equipped with a serial encoder, and is packed with high-level features, including real-time auto-tuning and model adaptive control.

This servo can substitute for microstep and five-phase stepping motors, and it can be easily used even by first-time users. A “new age” servo for use in a broad range of fresh applications, including semiconductor manufacturing devices, printing machines and electronic component assembly.
Handy Super-Compact Size

Servo Amplifier
- For up to 400 watts, a super-compact size of only 40 millimeters by 130 millimeters was achieved through the incorporation of a newly developed power module and an optimal thermal design made possible with computer-aided engineering techniques.
- Mitsubishi servo control technology including model adaptive control and real-time auto-tuning is achieved with a micro-controller, resulting in the maximum performance with the fewest number of parts.
- Select either a single-phase 100 V or 200 V amplifier.

Servomotor
- Improved heat dissipation of the motor and a super-compact design are achieved with a molding process that uses newly developed high-thermal conductivity resin. (Frame diameter on 100-watt units and below is 40 millimeters square.)
- This compact design offers maximum torque of 400% (100-watt units and below) through enhanced coil density made possible through original Mitsubishi technology.
- Motors with failsafe electro-magnetic brakes are available.

Stepping Motor Replacement

No More Cogging or Stalling
Because control is performed using integral feedback to verify the servomotor’s position, this unit can start smoothly, without losing step. This is often a problem with stepping motors responding to sudden load fluctuations and sudden acceleration / deceleration.

Smooth Operation
Operation is smooth at low speeds and during acceleration / deceleration because feedback control is performed with a 4,000 pulse / rev encoder.

Stable Torque Characteristics
Reduced machine cycle time and greater production speeds are achieved thanks to stable torque characteristics, from low to high speeds (maximum rotation speed 4,500 rpm).

Controllable Torque
Prevent damage to machines and products by using the torque-limiting feature.
Easy Operation

■ Real-Time Auto-Tuning
Merely selecting the response setting that fits the machine being used eliminates the need for servo gain adjustments. This is because the real-time auto-tuning function automatically adjusts the gain to fit the machine. Mitsubishi’s unique model adaptive control makes a highly responsive and stable system possible.

■ Automatic Recognition of Motor Model
The servo amplifier automatically recognizes the drive motor with the motor ID information (motor model name, etc.) built into the encoder. This eliminates the need to set parameters, thereby avoiding errors.

■ Easy Operation
• Test operation, monitoring, and parameter setting can all be performed easily using just four buttons.
• The monitoring function allows you to display the status of nine parameters, including motor rotation speed, feedback pulse, command pulse, effective load factor, and peak load factor.
• The servo can remember the conditions that existed during the last four alarms.
• Either a 24 V or 5 V power supply can be selected for the I/O which is assigned by the user.
• The MR-C can handle three command pulse formats: encoder signals, pulse and direction, and CW/CCW pulses.

Satisfies Overseas Industrial Standards

■ Satisfies EN, UL, and cUL Standards
• An EMC filter (optional) is available for meeting EN-standard EMC directives. The MR-C-UE servo amps and HC-PQ-UE servomotors meet low-voltage directives (LVD).
• The MR-C-UE servo amps and HC-PQ-UE servomotors meet UL, cUL and EC standards.

Personal Computer Interface

■ Communication with a PC is Made Possible
• This servo can be connected to a PC using the optional RS-232C unit.
• Setup software can be used to display various monitoring details and to enter and save all parameters. And with its graphing functions, it is possible to display servomotor speed, torque waveform, and digital I/O status. This makes it possible to check operating conditions.
Applications

Semiconductor Manufacturing Devices
The MR-C can be used to replace stepping motors in LCD and wafer conveyance devices.

Electronic Component Assembly
Can be used with small loaders and unloaders and simple X-Y positioning tables.

Robots
Suited for use at the tips of small and ultra-compact robots.

Printing Machines
Well suited for use in positioning for registration presses and label printing.

Textile Machines
Well suited for use in positioning with knitting, embroidering, and laundry machines.

Other Applications
The MR-C can be used to replace microstepping and five-phase step motors in office, medical and experimental machinery.

MCOMM Configuration Software
With this software everything from setup to monitoring, diagnostics, parameter entry and recall, and test operation can be performed easily with a personal computer. To use this software, the optional RS-232C unit must be attached to the servo amplifier.

Features
- **Windows Compatible**
 Amplifier parameter settings, monitoring and diagnostics can be performed using MCOMM and a PC running Windows 95, 98, ME, NT 4.0 or 2000 Professional.
 - Required memory: 32MB or more
 - Required hard disk space: 30MB or more
 - Serial port required

- **Wide Range of Monitoring Functions**
 Equipped with graphing functions capable of displaying servomotor status through input signal triggers, such as command pulse, standing pulse, and rotation speed.

- **PC Test Operation**
 Servomotor test operation can be performed easily with a PC.

Specifications (Functions within parentheses are added to the MR-C when using MCOMM.)

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitoring</td>
<td>Comprehensive display, high-speed display, graphing</td>
</tr>
<tr>
<td>Alarm</td>
<td>Alarm display, alarm history, (alarm data display), (pre-alarm graph display)</td>
</tr>
<tr>
<td>Diagnosis</td>
<td>DI/DO display, (display of reasons for failure to rotate), (time setting display), (cumulative power on display), software number display, tuning data display, (ABS data display), (VC automatic offset display)</td>
</tr>
<tr>
<td>Parameters</td>
<td>Data setting, list display, list display of changes, detailed information display, (feed method selection [note 2])</td>
</tr>
<tr>
<td>Test Operation</td>
<td>JOG operation, (positioning operation), (motor-less operation), DO forced output, (programmed operation through simplified language), (one-step feed [note 2])</td>
</tr>
<tr>
<td>Point Data [note 2]</td>
<td>(Comprehensive position/speed block data display, data setting, teaching function)</td>
</tr>
<tr>
<td>File Management</td>
<td>Data entry/saving, printing</td>
</tr>
<tr>
<td>Other Functions</td>
<td>(Automatic operation), help display</td>
</tr>
</tbody>
</table>

Notes: 1. Windows is a trademark of the Microsoft Corporation.
2. Available with MR-H-AC.
Connections with Peripheral Equipment

Required connectors and options have been listed to allow users to set up their systems and use immediately after purchase.

Power Supply
Single-Phase 100 V or 200 V Power Supply
(Power Supply and Voltage vary depending on the Series)

![Power Supply Diagram](image1)

No-Fuse Circuit Breaker (NFB)
Used to protect the power supply line.
NF30 type 10A for: MR-C20A1 and MR-C40A
(See manual)

Magnetic Contactor (MC)
Used to turn off the servo amplifier’s power when an alarm has been triggered.
Models: S-N18, S-N21
(See manual)

Optional Regeneration Unit
Attached as necessary when regeneration frequency is high or load’s moment of inertia is large.
Models: MR-RB013, MR-RB033
(See manual)

Display Panel
Displays alarms, parameters and system function values.
(See page 7)

Setting Section
Parameters, system functions, and modes are selected and set with push buttons.
(See page 7)

MR-C Servo Amplifier
MR-C□ A or MR-C□ A1

Connector for encoder feedback.
CN2

4
MR-TB20 Junction Terminal Block
Signals can be easily wired to the optional terminal block and optional CN1 cable.

MR-C-T01 Optional RS232-C Unit
Mounting this optional unit on the underside of the servo amplifier makes RS-232C communications possible. Turn the power off when mounting or removing this unit.

Terminal Block
The power supply, optional regeneration unit, and motor’s U, V, W ground wires are connected to the terminal block. Use a regular flat head screwdriver to connect the power supply to the terminal block. (See manual)

Upper Controller
This servo can be connected to a Mitsubishi motion controller or any pulse output controller.

External 24 V or 5 V Power Supply
Connects to an external power supply. (24 or 5 volts, 0.2 amperes or greater)

Control Signal (for Operation Panel)
Connects to the PLC I/O or the machine’s operation panel.

Lower Controller
This servo can be connected to a Mitsubishi motion controller or any pulse output controller.

Control Signal (for Operation Panel)
Connects to the PLC I/O or the machine’s operation panel.

RS-232C Communications (CN3)
Connects the unit to user’s personal computer, making possible monitoring, batch parameter entry and storage, graph display, and test operation. Dedicated cables and setup software are available also.
Cables: For IBM compatibles: MR-CPCATCBL3M
Setup software: MCOMM
(See page 6)

Encoder Cable
This cable connects the servomotor encoder to the servo amplifier. Extended-life cables with a long bending life are also available. This cable comes in standard lengths of 5 and 10 meters.
Models: MR-JCCBL□ M-L (Standard model)
MR-JCCBL□ M-H (Extended-life model)
(See manual)

Servomotor Cable
The motor’s power cable and the encoder cable are extended 0.3 meter.

Encoder
Detects position, speed and magnetic pole position.
Local Operation

3-digit, 7-segment display panel

MODE: Used to switch between display modes

SET: Used to set parameters, for auto-tuning, and for switching to the test screen

UP: Used to change display and for re-entering parameter data

DOWN: Used to change display and for re-entering parameter data

Explanation of 7-Segment Display Device

Pressing the MODE button causes the display mode to change one step at a time in the sequence illustrated below.

<table>
<thead>
<tr>
<th>Status Display</th>
<th>Diagnostic</th>
<th>Alarm</th>
<th>Basic Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power On</td>
<td>Feedback Pulse Accumulation H</td>
<td>Motor Rotation Speed</td>
<td>Standing Pulse L</td>
</tr>
<tr>
<td></td>
<td>Standing Pulse H</td>
<td>Command Pulse Accumulation L</td>
<td>Command Pulse Frequency</td>
</tr>
<tr>
<td>Status Display</td>
<td>Feedback Pulse Accumulation L (note 3)</td>
<td>Command Pulse Accumulation H</td>
<td>Command Pulse Frequency</td>
</tr>
<tr>
<td>Sequence</td>
<td>Estimated Load Inertia Ratio</td>
<td>Peak Load Factor</td>
<td>Effective Load Factor</td>
</tr>
<tr>
<td>Diagnostic</td>
<td>Parameter Error Number</td>
<td>Most Recent Alarm</td>
<td>Second Most Recent Alarm</td>
</tr>
<tr>
<td>Alarm</td>
<td>Third Most Recent Alarm</td>
<td>Fourth Most Recent Alarm</td>
<td>Fifth Most Recent Alarm</td>
</tr>
<tr>
<td>Basic Parameters</td>
<td>Regeneration Load Factor</td>
<td>Auto-Tuning</td>
<td>Electronic Gear Numerator</td>
</tr>
<tr>
<td></td>
<td>Command Pulse Frequency</td>
<td>Electronic Gear Denominator</td>
<td>Positioning Command Acceleration/Deceleration Time</td>
</tr>
<tr>
<td></td>
<td>In-Position Range</td>
<td>Input Signal Selection 1</td>
<td>Command Pulse Selection</td>
</tr>
<tr>
<td></td>
<td>Parameter Entry Range</td>
<td>Parameter Entry Range</td>
<td>Parameter Entry Range</td>
</tr>
</tbody>
</table>

Note 1: Set when using the optional regeneration unit.
Note 2: Can operate without being set. Set the basic parameters as necessary.
Note 3: L: low, H: high
Standard Specifications

Servo Amplifier

<table>
<thead>
<tr>
<th>Model</th>
<th>HC-PQ033(B)</th>
<th>HC-PQ053(B)</th>
<th>HC-PQ13(B)</th>
<th>HC-PQ23(B)</th>
<th>HC-PQ43(B)</th>
<th>HC-PQ033(B)</th>
<th>HC-PQ053(B)</th>
<th>HC-PQ13(B)</th>
<th>HC-PQ23(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Servomotor Model*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continuous Characteristics

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated Output (W)</td>
<td>30</td>
<td>50</td>
<td>100</td>
<td>200</td>
<td>400</td>
</tr>
<tr>
<td>Maximum Torque (N·m (oz·in))</td>
<td>0.095 (13.45)</td>
<td>0.16 (22.66)</td>
<td>0.32 (45.32)</td>
<td>0.64 (90.63)</td>
<td>1.3 (184)</td>
</tr>
<tr>
<td>Rated Rotation Speed (rpm)</td>
<td>3,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Rotation Speed (rpm)</td>
<td>4,500</td>
<td>5,400</td>
<td>5,175</td>
<td>5,400</td>
<td>4,602</td>
</tr>
</tbody>
</table>

Servomotor (note 1)

- Output and rated rotation speed cannot be guaranteed when the power supply's voltage falls. The currents indicated are the amplifier's rated and maximum current.
- The power facility capacity varies depending on the power supply's impedance.
- The figures for regeneration brake frequency indicate the permissible frequency when the motor alone decelerates to a stop from the rated rotation speed. The triangle marks in the table indicate that there are no limits on regeneration if the effective torque is less than the rated torque. When load is applied, regeneration frequency is 1/(rev·1) of the figures in the table (m = load's moment of inertia/motor's moment of inertia). When the rated rotation speed is exceeded, the permissible number of times is in inverse proportion to the square of operating speed divided by rated speed. When the operation rotation speed is frequently changing, or when a continuous regeneration condition exists, such as during up/down feed, the regeneration heat during operation must be assessed and measures taken to ensure that it does not exceed the permissible range.
- When the load's moment of inertia is 30 times or less, there are no limits on regeneration brake frequency if the effective torque is less than the rated torque.
- When the load's moment of inertia is 10 times or less, there are no limits on regeneration brake frequency if the effective torque is less than the rated torque.
- Contact Mitsubishi if the load's moment of inertia ratio exceeds the figure in the table.
- The direction of oscillation is as shown in this diagram.
- The moment of inertia of a motor with a built-in electromagnetic brake is noted in the diagram of external dimensions.

Permissible Instantaneous Rotation Speed (rpm)

- For servomotors with electromagnetic brakes, the moment of inertia of the motor with a brake is noted in the diagram of external dimensions.

Maximum Output Current (A)

<table>
<thead>
<tr>
<th>Model</th>
<th>5.0</th>
<th>5.0</th>
<th>6.0</th>
<th>6.44</th>
<th>6.0</th>
<th>6.0</th>
<th>6.0</th>
<th>6.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regeneration Brake</td>
<td>0.095 (13.45)</td>
<td>0.16 (22.66)</td>
<td>0.32 (45.32)</td>
<td>0.64 (90.63)</td>
<td>1.3 (184)</td>
<td>0.095 (13.45)</td>
<td>0.16 (22.66)</td>
<td>0.32 (45.32)</td>
</tr>
<tr>
<td>Frequency (times / min)</td>
<td>MR-RB01 (10W)</td>
<td>MR-RB03 (30W)</td>
</tr>
</tbody>
</table>

Recommended Load's Moment of Inertia Ratio

- 30 times the servomotor's moment of inertia or less (note 5)

Safety Features

- Excess current, regeneration error (electronic thermal), excess voltage, motor-amp combination error, encoder error, insufficient voltage/sudden power outage, excess speed, large error

Environment

- Ambient Temperature/Humidity
 - 0-50°C (avoid freezing), storage: -15-70°C/80% RH or below (avoid condensation), storage: 90% RH or below
 - Indoor (avoid exposure to direct sunlight), no corrosive gas, inflammable gas, oil mist or dust

Structure

- Totally enclosed, self-cooling (protection method: IP44)

Attachments

- Encoder, serial

Power Supply

- Voltage/Frequency
 - Single-Phase AC 200 ~ 230 V 50 / 60 Hz
 - Single-Phase AC 100 ~ 115 V 50 / 60 Hz

Control System

- Sinusoidal PWM control/control system

Control Mode

- Pulse-train input position control

Control Logic

- Model adaptive control

Auto-Tuning

- Real-time auto-tuning

Specifications

- Command Pulse Multiple
 - A, B: 1-199
 - 1/50<A / B<20

Position Control Specifications

- Max. 200kpps
- 4,000 pulse/revolution
- 0-999 pulses
- ±50 pulses

Power Supply

- External DC 24 V or DC 5 V power supply

PC Communication Functions

- Necessary Options
 - Optional RS-232C unit (MR-C-T01), optional dedicated cable, and PC setup software required

Structure

- Open

Environment

- 0-50°C (avoid freezing), storage: -20-60°C/90% RH or below (avoid condensation), storage: 90% RH or below

Weight (kg) (lb)

<table>
<thead>
<tr>
<th>Model</th>
<th>0.32 (0.71)</th>
<th>0.37 (0.82)</th>
<th>0.50 (1.1)</th>
<th>0.96 (2.1)</th>
<th>1.42 (3.13)</th>
<th>0.32 (0.71)</th>
<th>0.37 (0.82)</th>
<th>0.50 (1.1)</th>
<th>0.96 (2.1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elevation / Oscillation (note 6)</td>
<td>1,000 meters or less above sea level; X:19.6 m² / 2G, Y:19.6 m² / 2G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Environment (note 1)

- Elevation / Oscillation (note 6)
 - 1,000 meters or less above sea level; X:19.6 m² / 2G, Y:19.6 m² / 2G

Environment (note 2)

- Elevation / Oscillation (note 6)
 - 1,000 meters or less above sea level; X:19.6 m² / 2G, Y:19.6 m² / 2G

Environment (note 3)

- Elevation / Oscillation (note 6)
 - 1,000 meters or less above sea level; X:19.6 m² / 2G, Y:19.6 m² / 2G

Environment (note 4)

- Elevation / Oscillation (note 6)
 - 1,000 meters or less above sea level; X:19.6 m² / 2G, Y:19.6 m² / 2G

Environment (note 4-1)

- Elevation / Oscillation (note 6)
 - 1,000 meters or less above sea level; X:19.6 m² / 2G, Y:19.6 m² / 2G

Environment (note 4-2)

- Elevation / Oscillation (note 6)
 - 1,000 meters or less above sea level; X:19.6 m² / 2G, Y:19.6 m² / 2G

Environment (note 4-3)

- Elevation / Oscillation (note 6)
 - 1,000 meters or less above sea level; X:19.6 m² / 2G, Y:19.6 m² / 2G

Environment (note 5)

- Elevation / Oscillation (note 6)
 - 1,000 meters or less above sea level; X:19.6 m² / 2G, Y:19.6 m² / 2G

Notes

1. Inquire about use in special conditions, e.g., where oil and water are present in the machine site.
2. Output and rated rotation speed cannot be guaranteed when the power supply's voltage falls. The currents indicated are the amplifier's rated and maximum current.
3. The moment of inertia varies depending on the power supply's impedance.
4. The figures for regeneration brake frequency indicate the permissible frequency when the motor alone decelerates to a stop from the rated rotation speed. The triangle marks in the table indicate that there are no limits on regeneration if the effective torque is less than the rated torque. When load is applied, regeneration frequency is 1/(rev·1) of the figures in the table (m = load's moment of inertia/motor's moment of inertia). When the rated rotation speed is exceeded, the permissible number of times is in inverse proportion to the square of operating speed divided by rated speed. When the operation rotation speed is frequently changing, or when a continuous regeneration condition exists, such as during up/down feed, the regeneration heat during operation must be assessed and measures taken to ensure that it does not exceed the permissible range.
5. Contact Mitsubishi if the load's moment of inertia ratio exceeds the figure in the table.
6. The direction of oscillation is as shown in this diagram.

See Product Manual or Selection Guide for complete part numbers.