. MITSUBISHI ELECTRIC
A% AUTOMATION, INC.

Engineering Group

Users Guide

OEM PackML Implementation Templates

Release 4, Version 1.0

. MITSUBISHI ELECTRIC
AW AUTOMATION, INC.

Engineering Group

Users Guide

OEM PackML Implementation Templates

Release 4, Version 1.0

INtrodUCtion ...cceeeeiiieeeec e,
PackML Template System Architecture.................
Mitsubishi PackML Template Key Components.....
Mitsubishi PackML Template Program Structure ..

High Level OEM Implementation Steps..................

o U h W N R

Parts of the PackML Implementation Users Guide

Content

@ MITSUBISHI ELECTRIC
&% AUTOMATION, INC.

Part1-i Engineering Group

Revision History

Version

Revision Date

Description

R4 V1.0

January 31, 2016

Initial release of PackML OEM Implementation Templates Release 4

‘ MITSUBISHI ELECTRIC
A% AUTOMATION, INC.

Part 1 —ii Engineering Group

Mitsubishi PackML Implementation Templates — Release 4
Part 1: Overview

1 Introduction

This set of Users Guide documents describes the implementation of Mitsubishi OEM PackML Implementation Templates:L
and steps on how to use the Templates to implement packaging machine control programs by OEM users. Using the
Mitsubishi PackML templates enables OEMs to implement packaging machine control programs that satisfy the OMAC
PackML standard and align with the OMAC PackML Implementation Guide with much reduced effort.

The main functions of the Mitsubishi PackML templates are to (1) handle PackML state and mode transitions, (2)
accumulate machine execution time in each valid mode and state, and (3) process events (e.g. alarms and warnings) of
machine operations. However, the Mitsubishi PackML templates are NOT intended to be used without modifications or
enhancements with machine control PLC, motion and HMI programs. For example, different PLC, motion controller, and
GOT types that are used in an actual OEM machine will require PLC, motion controllers, and GOT setup parameters to be
adjusted accordingly.

These templates depend on PackML commands and status from PLC, motion and HMI programs to properly perform
machine mode and state transitions at the unit machine level per ISA-88 definition. Thus it is OEM’s responsibility to supply
the proper commands and state status from their machine control programs to the Mitsubishi PackML templates in order
for the PackML machine modes and states to function properly. Event handling function blocks are included in the
Templates to enable easier and more consistent machine event handling.

The details on how the machine control programs should be integrated in the Mitsubishi PackML templates are described in
this document.

2 PackML Template System Architecture

The PackML templates are designed to run on a system with the minimum of a RO8CPU and a GT27 HMI. The system
architecture used to create the Mitsubishi PackML is shown in the following block diagram. The PLC is a RO8CPU and the
GOT is a GT27 with the resolution of 800 x 600.

Because of the large number of tags required to support the PackTags specification, an extended memory card may be
required to be installed in the ROSCPU.

Ethernet Network Switch

Channel 1
RO8CPU
Programming PC GT27 (800x600) 192.168.3.39
192.168.3.199 192.168.3.18
iQR System

Figure 1 — Mitsubishi PackML GXW3 Template System

The programming laptop is where the iQ Works is executed. The laptop is connected to the GOT and the PLC CPU using the
Ethernet connections to download screen information and PLC project.

The configurations of these components are described in more details in other parts of the Mitsubishi PackML
Implementation Users Guide.

1
Also referred to as Mitsubishi PackML Templates or PackML Templates, or simply Templates in this document.

¢ MITSUBISHI ELECTRIC Part 1-Page 1 Engineering Group
A% AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — Release 4
Part 1: Overview

3 Mitsubishi PackML Template Key Components

The Mitsubishi PackML Template consists of the following key components that an OEM can use directly without
modifications:

1. All PackTags defined and allocated to specific PLC registers
2. PackML_ModeStateManager Function Block
3. PackML_ModeStateTimes Function Block
4. Event Handling Function Blocks
0 CM_Event Function Block
0 Event_Manager Function Block
0 Event_Summation Function Block
0 Event_Sort Function Block

The PackTags, PackML Core function blocks, and Event Handling Function Blocks are developed in GX Works 3 and provided
as integral parts of the PackML Template GX Works 3 program in the iQ Works Workspace.

The description and implementation of PackTags are described in Mitsubishi PackML Implementation Users Guide — Part 3
PackTags Design Document. The core PackML function blocks are described in Mitsubishi PackML Implementation Users
Guide — Part 4 PackML Core Function Block document. The Event Handling Function Blocks are described in Mitsubishi
PackML Implementation Users Guide — Part 5 Event Handling Function Block document.

4 Mitsubishi PackML Template Program Structure

The Mitsubishi PackML Template program utilizes the key components described in the above section and are organized
following the OMAC Users Group PackML Implementation Guide and the ISA-88 Make2Pack modular structure as shown in
Figure 2 below. All routines of the PackML template program are developed in GX Works 3 and function blocks are used
extensively. The PLC languages used in this template are mainly Function Block Diagram (FBD) and Structure Text (ST).

Module Configuration
Program

= 2 UnitMach
= & UM_Main
B= Local Label
P WorkSheet
= £ EM00
= & EM00_Main
B= Local Label
P WorkSheet
= =1 EMO1
= @ EMO01_Main
B= Local Label
P WorkSheet
1 Fixed Scan
it Event
1 Standby

= 121 No Execution Type

& Unregistered Program

Figure 2 — Mitsubishi PackML Template Program Structure

¢ MITSUBISHI ELECTRIC Part 1-Page 2 Engineering Group
A% AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — Release 4
Part 1: Overview

Each Equipment Module Worksheet contains all the Control Modules within the Equipment Module and each Control
Module is encapsulated into a function block itself.

EMO1_CMOO_EventControl_FB_1
| EMO1_CMOO_EvemtControl_FB 1 SET

|— en Eno e o
e

d gvst_EMD1_CMOD_PackML_Sts b_ModuleActrve})
3

EMD1_CMO1_Routine FB_1
EMOT_CMO1_Routine_FB SET

I_ N &0 N eno
e =)

ry

] gvst EMD1_CMOT_PackML_Sts b_ModuleActivs})
G

EMO1_CMO2_Routine FB_1
EMO1_CM02_Routine_FB SET

I—- EN ENG EN ENO
e

7

gesi_EMOT_CMOZ_PackML_Sts b_ModuleActrvol

EMD1_CMO3_Routine FB_1 :
EMO1_CMO3_Routine_FB SET

I——' EN ENO EN ENO
= =]

o)

gst_EMOT_CMO3_PackML_Sts b_MaduleActive]

EMO1_PackML_Crd_Sum_FB_1 E
EMO1_PackML_Cmd_Sum_FB SET

I— EN ENO EN ENO

]

Figure 3 — Example Breakdown of an Equipment Module

As an example, Equipment Module 00 (EMOQO) is further divided into Control Modules as shown in Figure 3 above. In this
case, Control Modules 00 through 03 are encapsulated in individual function blocks. In the GX Works3 project, all control
modules for an Equipment Module are organized into a folder named EMxx_Subroutines as shown in the figure below:

= &5 EMO0O_Subroutines
£ EM00_CMO00_EventControl_FB
o &5 EM00_CMO01_Routine_FB

&5 EM00_CMO02_Routine_FB
&5 EM00_CMO03_Routine_FB
& EM00_PackML_Cmd_Sum_FB

Figure 4 — Control Modules of Equipment Module 00

Each control module is implemented as a function block for easy project and code organization. When additional control
modules are needed, they can be implemented as function blocks first and then inserted into the Equipment Module
Worksheet.

In contrast to the Key Components, the Template program structure is intended to be modified to reflect the actual
packaging machine that is being developed. One key objective of the Mitsubishi Template Implementation program is to
demonstrate how a packaging machine program can be laid out and created. It is never intended to be used as is.

As shown Figure 2, the Mitsubishi PackML Template program is designed to represent a packaging machine (Referred to as
Unit_Machine) consists of two equipment modules (EM00 and EMO1). Each equipment module consists of four Control
Modules (CMO00 to CMO03) for machine operations and a Control Module to integrate appropriate PackML commands and
status for each Equipment Module from its control modules CM00O to CM03. An OEM has the flexibility to add or delete
equipment modules and control modules to match the actual machine that is being built.

Release 4 of the Mitsubishi PackML Implementation template does include the function blocks and example codes for
handling events (e.g. alarms and warnings) of the machine. An OEM needs to develop and incorporate machine control
routines to handle events and utilize the Template to help aggregate and manage the event lists. The details of event
handling are listed in Part 5 of the Users Guide.

¢ MITSUBISHI ELECTRIC Part1-Page3 Engineering Group
A7 AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — Release 4
Part 1: Overview

5 High Level OEM Implementation Steps

High level steps of tailoring the Mitsubishi PackML Templates to an actual packaging machine are described in this section:
1. Install the latest version of the Mitsubishi iQ Works on the programming computer.

2. Establish the Ethernet communication among the iQ PLC system, the GOT, and the programming computer by
configuring proper IP addresses and communication parameters of each device.

3. Analyze the Unit Machine design and divide the machine into proper equipment modules.
4. Define and allocate control functions into proper modular code and assign them to various control modules.

5. Follow the Mitsubishi PackML Template program structure and add or subtract equipment and control modules as
appropriate. For example, one may add additional Equipment Modules EM02 and EMO3 (by cutting, pasting, and
modifying the labels and names using one of the existing module in the template) or delete control modules
EMOO0_CMO3 if it is not needed.

a. The routine names such as “EM00_CMO01_Routines” can be modified to “Load_HMI” for example to
better reflect the actual purpose of the module which performs “Load Station Operator interface”
functions.

6. Develop machine PLC code and assign them in proper modules using iQ Works and GX Works 3.
7. Develop the GOT and motion control programs using iQ Works and GT Designer 3 and MT Works 2 respectively

8. Load programs in PLC, motion control and GOT.

6 Parts of the PackML Implementation Users Guide

The Mitsubishi PackML Implementation Users Guide consists of 6 documents:

Documents Descriptions

Part 1 - Overview Overview of the Mitsubishi PackML Template package and program structure

Part 2 — MELSOFT Navigator Descriptions of configuring the PackML Template System using iQ Works MELSOFT

Navigator
Part 3 — PackTags Design details of implementing PackTags in the PackML Templates
Part 4 — PackML Function Blocks Design details and PLC code of the core PackML function blocks
Part 5 — Event Handling FBs Design details and PLC code of event handling function blocks

Design details on the structure of the OEM Machine program following the OMAC
Implementation guide and the Make2Pack modularization. Description on the
initialization of PackML states, aggregation of PackML status and commands through
various equipment and control modules, and steps to modify the aggregation of
PackML status and commands when equipment modules and control modules are
added or removed.

Part 6 — Program Structure

Description of GOT sample screens to display PackML current mode and state and

Part 7 — GOT Screens
also the accumulated time for each mode and state.

¢ MITSUBISHI ELECTRIC Part1-Page4 Engineering Group
A7 AUTOMATION, INC.

’ MITSUBISHI ELECTRIC
AW AUTOMATION, INC.

Engineering Group

Users Guide

OEM PackML Implementation Templates

Release 4, Version 1.0

Content

A) (o e [V 4o 3 TSP PRSP 1
2 MELSOFT NaVvigator CONFIGUIAtIONccciciiiiiiiie ettt et e e et e e et e e e st e e e estaeeessaaeeesntaeeeasntaeessseeeeansaeeesnneeesssenean 1
D R Vo Te (U] LN @o Yo T U] = o ARSI 1
2 A [l Vo] S OeT o iT={UT ¢ 14 o] o U PUPPPOt 2
2.3 Adding Programs tO PLC AN GOTuuiiiiiiii ettt e e e e e e ette e e e e e e e e e baeaeeeaeeseaaasaeeaaaeseasstaaseaasseassssaseaaesensnnses 3
2.3.1. Creating NeW PLC Program ...ttt ettt ettt e e e e e e e Error! Bookmark not defined.
2.3.2. Adding EXiStING PrOSramsccccuieeeeiiiieeeieeeeteeeseireeessveeesssreeessseeeessnsneessssesennnes Error! Bookmark not defined.
2.3.3. AllOCAtiNG PrOZramsciicciieecciiee ettt e e ee e e e e s tre e e e saea e e ssnnaeeesnsaeeeennes Error! Bookmark not defined.
3 Registering Labels in the System Label Databaseccccuiiiiiiieiiiiie et ee e e et e e e e te e e s rete e e e sataeeesanaeeesnaeeean 3
4 Using the System Labels in the GOT PrOZIamcocuieeiciiieieieeeerie e ettt e ste e e sttt e e e satae e e eanaaeesateeeeassseeeansaeeessseeeensseessnnsens 4
4.1 Establish ROULE INTOrMAtioNcouiiiiiiiie ettt et b e e st e e bt e s b e e b et e sabe e neeessneeneees 4
4.2 Setting Up System Labels for GOT USE...ccouiiiiriiiiiiiiieeeiiee et ssiee e siee e Error! Bookmark not defined.
4.3 Using the System Labels iN GOT ...ttt e e e ettt e e e e e et e e e e e e e e s eabaaaeeaaeeessbabaaeaaeeeaassasaesaeesseasseaeaaaeeann 5
LT Y 0 1 0= 5
@ MITSUBISHI ELECTRIC Part 2 —i Custom Solutions Center

A% AUTOMATION, INC.

Revision History

Version

Revision Date

Description

R4 V1.0

January 31, 2016

Initial release of PackML OEM Implementation Templates Release 4

‘ MITSUBISHI ELECTRIC
A% AUTOMATION, INC.

Part 2 i Custom Solutions Center

Mitsubishi PackML Implementation Templates — Release 4
Part 2: MELSOFT Navigator Configuration

1 Introduction

This document describes the steps of configuring MELSOFT Navigator within the iQ Works software to establish the PackML
Template System.

The PackML template system consists of a ROSCPU and a GT27 HMI. The system architecture used to create the Mitsubishi
PackML templates is shown in the following block diagram. The PLC is a RO8CPU and the GOT is a GT27 with the resolution
of 800 x 600.

Ethernet Network Switch

Channel 1
RO8CPU
Programming PC GT27 (800x600) 192.168.3.39
192.168.3.199 192.168.3.18
iQR System

Figure 1 — Mitsubishi PackML Template System

The programming laptop is where the iQ Works is executed. The laptop is connected to the GOT and the PLC CPU using the
Ethernet connections to download screen information and PLC project.

The version of the MELSOFT Navigator used in creating Release 4 solution is Version 2.07H.

2 MELSOFT Navigator Configuration

Using the MELSOFT Navigator of the iQ Works package, one can create an integrated database that allows system labels to
be used harmoniously among the PLC, GOT and Motion control programs.

2.1 Module Configuration

The first step of creating an integrated project is to define the Module Configuration using the MELSOFT Navigator.
Figure 2 below shows how the Module Configuration is for the Release 4 solution in Navigator.

Q MITSUBISHI ELECTRIC Part 2 -Page 1 Custom Solutions Center
A% AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — Release 4
Part 2: MELSOFT Navigator Configuration

IR 15001 oo L G mpemertaon e G R VLA 0 -G ol Conenraon 10 i |

! Workspace Project Edit View iQ-R Modyle Configuration Online Jools Window Help 8%
AP INSE ADOFINIETE 05X T T
| Workspace ax # Network Configuration” B31Q-R Module Canfigu... | & Project List | % PackML_Template 3 | 4 b+ | Module List 9%
Elad\ML O’Euﬂ&:num Template GXW3 R4 V1.4 DA 2 ‘ iQ-R Moduse Setection |Find M ¢
- B Netvror on :
% Network Configuration LR T 184 i X
1 PackML OEM Impiementaton Tempiate GT2000 R4VI(GT2 = |l ig-R series
= Module Configuraton @ Main Base
I--310-R Module Configuration | @ Extension Base
{5 PackML Template GXW3 R4 VI FB WS{R0S)<ROSCPU> @ RQ Extension Base
51 Exhemet Configuration & PLCCPU
£1.CC I£ Fed Configuration i
£ CC-Link Configuration : c c:
B9 No Assignment Project Controll
& Project List 8. Motion CPU
= B Structured Data Types 8 Power Supply
% PacMLFB 8 Input
= ¥ Ver.2 System Label List @ Output
¥ PackML_Templizte R a1/0
@ Analog Input
@ Analog Output
@ Temperature Input
& Temperature Control Mod
. @ Simple Motion
| Bids-eye ax & Pulse 1/0/ Positioning

. Eloutput | B3 Task Lst | A3 Resuit of Power Supply Capacity and 1O Points Check | W Module .. | & Input Det_
CAP_ NUM SCRL

Figure 2 — Module Configuration

2.2 Network Configuration

After the Module Configuration is completed, the Module Configuration is automatically reflected in the Network
Configuration workspace. For the PackML Template System, the Ethernet network is added to the Network
Configuration as Network No. 1 as shown in Figure 3.

[EB eS0T avigtor AL GEM implemeniaion Tempate GV A VL 04 : pESmx
{ Workspace Broject Edit View Network Configuration Onfine Tools \yindow Help _ex
iDBA oo x B iRRAMR IS AOOFWMINET
| Workspace ax m <[B1Q-R Module Configuration | & Project List | ¥ PackML_Template_R3 | 4 | Modulelist 9 x
| = B PackiL OEM Implmentation Templte GXW3 RY V1.4 DA * I select Network | Find Modute| 4>

Netvork Configuraton
b vk Confgusation) |31 =5 e
I PackML OEM Implementaton Tempiate GT2000 R4VI(GTZ: _ ||m Network
= Module Configuration * ||= 6012000 Series
QR Modue Configuration SistonNo 1 192 1633 % & GOT1000 Serfes
] PackmL Template GXW3 R4 V1 FB WS(R08)<RISCPU> | Epme——
5 Exhemet Configuration Figure
B3 CC IE Feld Configuraton =5
B3 CC-Link Configuration JOF: Mg Corfgent || Connection Line
18 No Assgnment Project
& Project Lst
=% Suctured Data Types
5 PacdiLFB
%8 Ver.2 System Label Lt i
" PackML_Template_R3
i
i GTIS
| Birds-eye @ %
. i <
£ Output 3%
_ E0utput | B Task List | RResult of Power Supply Capacity and 1O Points Check | SModule .. | B input Det
CAP NUM ' SCAL

Figure 3 — PackML Template System Network Configuration

For the PackML Template System Release 4, a GT27 with the resolution of 800 x 600 is added to the system and then
configured with the proper channel designations and IP address.

MITSUBISHI ELECTRIC Part 2 - Page 2 Custom Solutions Center
W AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — Release 4
Part 2: MELSOFT Navigator Configuration

2.3 PLC and GOT Programs
In the PackML Template System Release 4 configuration, the PLC and GOT template programs are allocated to the PLC
and GOT of the system.

The PLC program “PackML Template GXW3 R4 V1 FB” and the GOT program is “PackML OEM Implementation
Template GT2000 R4V1”

Additional details of these programs are described in subsequent parts of this document set.

3 System Label Database

Once the PLC and GOT programs are allocated to the MELSOFT Navigator, the important next steps are to create the system
label database so that the labels defined in one of the programs can be shared and used by another program.

In the PackML Template System, all system labels are originated from the PLC program. The figure below is an example
showing the global labels defined in the PLC are assigned to the System Label Database and reflected to the System Label
Data base being kept in the Navigator. Make sure the “Access from External Device” check boxes are checked to enable
other devices, such as a GOT, other than the PLC to access these system labels.

[<Fer I [EasyDisplay | | Digplay Setfng | [Check |
Label Name Data Type Class Assign (Device/Label) Comment. System Label Name Access from Extemal Device
1 |svb_GOT_StateCompleteKey Bit VAR_GLOBAL - GOT_StateCompleteKey v
2 |svb_GOT_UnSuspendKey Bit VA hd GOT_UnSuspendKey v
3 |svb_GOT SuspendKey Bit - lsvb_GOT_SuspendKey v
4 |svh_GOT ClearKey Bit - lsvb_GOT_Clearkey v
5 |svb_GOT_AbortKey Bit - GOT_AbortKey v
6 |svb_GOT_UnHoldKey Bit hd GOT_UnHoldKey v
7 |svb_GOT_ StopKey Bit - GOT_StopKey v
8 |svb_GOT HoldKey Bit - GOT_HoldKey v
9 |svb_GOT_StartKey Bit - lsvb_GOT_StartKey v
10 |svb_GOT_ResetKey Bit - v
11 |svb_GOT_User2Mode Bit - v
12 |svb_GOT_User!Mode Bit - v
13 |svb_GOT_ManualMode Bit - GOT_ManualMode v
14 |swb_GOT_MaintMode Bit hd jsvb_GOT_MaintMode v
15 |svb_GOT_ProdMade Bit - lsvb_GOT_ProdMode v
16 [sww_GOT_Screen_Switch Wiford [Signed] « |D10040 GOT_Screen_Switch v
17 |svb_GOT_ClearCurMode TimeKey - GOT_ClearCurMode TimeKey v
18 |svb_GOT_ClearAllTimesKey - GOT_ClearAllTimesKey v
13 |svda_GOT_CurentStatsTimes - _GOT _CurentState Times v
20 |svda_GOT_CumulativeStateTimes - |- J= GOT CumulativeState Time: v
21 |svda_GOT_ModeCurment Time . (hd _GOT_ModeCument Time v
22 |svda_GOT_ModeCumulative Time VAR_GLOBAL - _GOT_ModeCumulative Time v
23 |svd_GOT_AccTimeSinceReset _ |VAR GLOBAL = [svd_GOT_AccTmeSinceResat v
-

Figure 4 — Examples of System Label Assignments in GX Works 3

The steps required to reserve the global labels and reflect to the System Label Database are straightforward, and
documented in Chapter 5 Registering Labels of “GX Works 3 Operating Manual” (Document # SH(NA)-081215ENG-F).

Once the System Labels are registered, they are shown in the Navigator as illustrated in Figure 5 and can be used by

external devices.

@ MITSUBISHI ELECTRIC

A% AUTOMATION, INC.

Part 2 —Page 3

Custom Solutions Center

Mitsubishi PackML Implementation Templates — Release 4
Part 2: MELSOFT Navigator Configuration

Find Object System Label Ver2
Find Find Next
Del... System Label Name & Label Name Data Type Constant ‘ CPU Name | Project Name | Assignment (Device/Label)| Attribut *
1 gvd_Adm_AccTimeSinceReset gvd_Adm_AccTimeSinceReset Double Word[Signed] ROBCPU PackML Templ... D23781 Global
2 [0 gvda_Adm_ModeCumulativeTime gvda_Adm_ModeCumulativeTime Double Word[Signed](0..31) ROBCPU PackML Templ... D20213 Global
3 [0 gvda_Adm_ModeCurrentTime gvda_Adm_ModeCurrentTime Double Word[Signed](0..31) ROBCPU PackML Templ... D20149 Global
4 [0 gvda_Adm_StateCumulativeTime gvda_Adm_StateCumulativeTime Double Word[Signed](0..31,0..17) ROBCPU PackML Templ... D21429 Global
5 [0 gvda_Adm_StateCurrentTime gvda_Adm_StateCurrentTime Double Word[Signed](0..31,0..17) RO8BCPU PackML Templ... D20277 Global
6 [gvs_Sta_StateCurrentName gvs_Sta_StateCurrentName String ROBCPU PackML Templ... D10000 Global
7 [0 gvs_Sta_UnitModeCurrentName gvs_Sta_UnitModeCurrentName String ROBCPU PackML Templ... D10020 Global
8 [0 svb_GOT_AbortKey svb_GOT_AbortKey Bit ROSCPU PackML Templ... GV:25001.2 Global
9 [svb_GOT_Abortkeyl svb_GOT_AbortKey1 Bit ROSCPU PackML Templ... GV:25000.1 Global
10 [svb_GOT_ClearAlTimeskey svb_GOT_ClearAlTimesKey Bit ROSCPU PackML Templ... GV:25001.E Global 1
11 [svb_GOT_CearCurrModeTimeKey svb_GOT_ClearCurrModeTimeKey Bit ROSCPU PackML Templ... GV:25001.D Global 5
12 [0 svb_GOT_Clearkey svb_GOT_Clearkey Bit ROBCPU PackML Templ... GV:25001.1 Global
13 [0 svb_GOT_ESTOPKey svb_GOT_ESTOPKey Bit ROBCPU PackML Templ... GV:25000.C Global
14 [0 svb_GOT_ESTOPKeyl svb_GOT_ESTOPKey1 Bit ROBCPU PackML Templ... GV:25000.5 Global
15 [0 svb_GOT_EventAbortKey svb_GOT_EventAbortKey Bit ROSCPU PackML Templ... GV:25000.8 Global
16 [0 svb_GOT_EventStopKey svb_GOT_EventStopKey Bit ROSCPU PackML Templ... GV:25000.A Global
17 [0 svb_GOT_GuardDoorOpenKey svb_GOT_GuardDoorOpenKey Bit RO8BCPU PackML Templ... GV:25000.7 Global
18 [0 svb_GOT_GuardDoorOpenKey1l svb_GOT_GuardDoorOpenKeyl Bit ROBCPU PackML Templ... GV:25000.0 Global
19 [0 svb_GOT_HoldKey svb_GOT_HoldKey Bit ROBCPU PackML Templ... GV:25001.5 Global
20 [0 svb_GOT_LowMaterialKey svb_GOT_LowMaterialKey Bit ROSCPU PackML Templ... GV:25000.9 Global
21 [0 svb_GOT_LowMateralkeyl svb_GOT_LowMaterialkeyl Bit ROSCPU PackML Templ... GV:25000.2 Global -
22 [0 svb GOT_MGFauftkey svb_GOT_MGFaultKey Bit ROSCPU PackML Templ... GV:25000.D Global
23 [0 svb_GOT_MGFauftkeyl svb_GOT_MGFaultKeyl Bit ROBCPU PackML Templ... GV:25000.6 Global
24 [0 svb_GOT_MaintMode svb_GOT_MaintMode Bit ROSCPU PackML Templ... GV:25001.B Global
25 [svb_GOT_ManualMode svb_GOT_ManualMode Bit ROSCPU PackML Templ... GV:25001.A Global
26 [0 svb_GOT_ProdMode svb_GOT_ProdMode Bit ROSCPU PackML Templ... GV:25001.C Global
27 [0 svb_GOT_RemoteStopKey svb_GOT_RemoteStopKey Bit ROSCPU PackML Templ... GV:25000.B Global
28 [0 svb_GOT_RemoteStopKeyl svb_GOT_RemoteStopKeyl Bit ROSCPU PackML Templ... GV:25000.4 Global
29 [0 svb_GOT_ResetKey svb_GOT_ResetKey Bit ROBCPU PackML Templ... GV:25001.7 Global
30 [0 svb_GOT_Startkey svb_GOT_StartKey Bit ROBCPU PackML Templ... GV:25001.6 Global
31 [0 svb_GOT_StateCompleteKey svb_GOT_StateCompleteKey Bit ROBCPU PackML Templ... GV:25000.E Global a8
= o = d | o
0 enable the edited contents of the system label, e o
reflection to the system label database is required.
Nine h sadigned e i onged i yster ol Vor2, Eph=—0
he change of refer side project does not need. Reflect to
* System label Ver.2 is only usad in IQ-R series/GOT2000 series. Not Reflected: 0 System Label
Total: 0 Database

Figure 5 — Example of System Labels

4 Using the System Labels in the GOT Program

To utilize the system labels in the GOT program, one needs to configure the objects in the GT Designer 3. In order for the
labels to be recognizable in the GOT program, the Navigator system needs to establish routing information.

4.1 Establish Route Information
In Navigator, select Workspace -> System Label -> Route Information/Routing Parameters Generation

'wa_@;paoegme« Edit Yiew Online Tools Window Help
| New.. Cirl+N
Dpen., Cirl+Q L L

Metwork Configuration i
Llose W3 R4 VL4 DA

Save Cries Find Qbject. |Whole Displey____|
| Save o

fe GT2000 RAVI(GT22
Comprass/Unpack »

Delete._
Folder
wmm Caonfjguration .
Check *
Allocate Project With The Controller_

{ROG)<ROBCRU>
.

3 | System Label List L

Structured Data Types v
| System Label Database G

e+ [B Boute ion/R Pararmitters
1 PackML OEM Impie... | Y5 bl
2 PackML OEM Imple... 14

3 PackML OEM Imgple.. 15
4 PackML OEM Imgple... i 16

1 17

| Exit AltaFd o o

Figure 6 - Generating Routing Information

0 MITSUBISHI ELECTRIC Part 2 -Page 4 Custom Solutions Center
A7 AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — Release 4
Part 2: MELSOFT Navigator Configuration

The routing information is generated based on the GOT and PLC that are in the system and how they are configured to
connect to each other as shown in the figure below. This routing information will be used by the GT Designer 3 to
connect the GOT objects to the corresponding PLC labels.

Gor Reference target CPU be Used
GT27##-5.20-{Ethemet.5)4Q-R Module Configuration.22

771 Do ot displey this dialog again (Always use the route recommended by MELSOFT Navigator)
Thi seting can be changed 1 he oplon seting g,

Figure 7 - Example of Generated Routing Information

4.2 Using the System Labels in GOT

Assigning an object to use the System Label is straightforward steps, and one can consult Chapter 6 of “GT Designer3
(GOT2000) Screen Design Manual” (Document No. SH(NA)-081220ENG-M).

As an example shown in Figure 8 below, the Bit Switch “Reset” was assigned to System Label svb_GOT_ResetKey. Once
the System Label association is made, the pressing of Bit Switch Reset will cause the label svb_GOT_ResetKey to be “On”
in the PLC.

_—l

Device: svb_GOT_Resetiey |
Adtion
@ Momentary O Akernate
iSet T Reset

Refinement Optons | hone -

Refingmant Characers.

System Lsbel st Name |FackML_Tumplate 84 | =

Fnd Subjoct Whle Dsley EA
System Labe Name Labed Hame Data Type Constant | CPUName | Project Mame

15 | swh_GOT Mok, svb_GOT_Hokikey Bt ROBCRU PackML Templ... Giobal

20 | svb_GOT_LowM... Svb_GOT_LowMa... Bt ROBCPU PackML Templ.. GV:25000.69 Giobal

21 | svbGOT_Lowh.. svb_GOT_LowMa... Bt ROBCPU PackML Templ... GV:25000.b2 Giobal

22| b GOT_MGFL. svb_GOT_MGRL., BE ROBCPU PackML Templ... GV:25000.60 Giobal

23| svb GOT_MGFa.. svb_GOT_MGFau.. Bt ROBCPU PackML Templ.. GV:25000.66 Giobal

24 | s¥bGOT_Mant. svb_GOT_Manth.. Bt ROSCPU FackMLTempl.. GV:2500Lb8 Gobal 5‘

25 | svb_GOT_Manu... svb_GOT_Manual.. BT ROBCPU PackML Templ.. GV25001.bA Giobal 1

26| swb_GOT_Prod... svb_GOT_Prodm_. B ROBCPU PackML Templ.. GV:25001.bC Giobal

27 | swb_GOT_Remo,.. svb_GOT_Remot.., Br ROBCPU PackML Templ.. GV:25000.68 Giobal

28 | svb_GOT_Remo... svb_GOT_Remot... Bt ROBCPU PackML Templ.. GV:25000.b4 Giobal

» BT T FackML Tempk.. | GV: 2500167 x
— e S s S ;

B B @ =

Felationship disgram between sysiem label dasobase (*1) and project

"1
2

Figure 8 - Example of System Label Assignment in GOT

5 Summary

After completing the configuration steps described in this document, the system foundation is established to support the
detailed application program development.

Users should refer to user and system manuals corresponding to the hardware components and software packages that are
used in an application for further details.

MITSUBISHI ELECTRIC Part2-Page 5 Custom Solutions Center
AUTOMATION, INC.

’ MITSUBISHI ELECTRIC
AW AUTOMATION, INC.

Engineering Group

Users Guide

OEM PackML Implementation Templates

Release 4, Version 1.0

Content

A) (o e [V 4o 3 TSP PRSP 1
2 Key PackTags Design CONSIAEIAtIONSccccuuiiicieee et e eeite e este e e sttt e e e ettt e e sae e e e s tteeeestaeeesssaeaeassseeeassseessnseeeeansseesanseeesssenenn 1
3 PackTags Implementation CoONSIAEIAtIONS. . ..c.uiiiiciieeecieecctee et e e e e e e e st e e e e ate e e e sataeeesstseeeasseeessseeeeassseesanseeesssenenn 1
O [VA (=] 4 (W 0] o 7 ={ U] - 1 4 (o] o F PRSPPIt 2
4.1 DeVice Area and Label Ar@a.........oo ittt st st be e s b e bt b e e e reeearee 2
4.2 DBV .ttt et e e et s R b et e s b e e s e e et e s b e e e e e b e e e s e a e e e s bt e e e s raeeseans 3
4.3 2O g V=T o o Tyl oo AT =] o [o= USSR 3
I C) YV o Ta Rl I oY= I [oY o] [=T g g =T 0 = o Lo o RS 6
5.1 Command Labels — PackTags_CoOmMMANGdc.uiiiiiiieeiiiiiecciieeeeciee e ettt e e e st e e e s eneeeessaseeeesssseeeensaeessnsaeeesnsseeeanssseesansens 6
5.2 Ny LV I oL Rl o 1ol I T4 - 0 SRR 7
53 AdMINTSTIATIVE LADEIS ..ttt et sb et e st e e bt e e s a bt e bt e e s st e e be e e sabe e ne e e saneenee s 8
6 KepwWare Server CONTIGUIAtIONccoii et e et e e e e et e e e e e e e e et bt e e e e eeeseaaaaaeeaeeeseassbaeseaaeseasssbeseaeesannnsseneas 10
6.1 Adding a Channel of CoOMMUNICAtIONciiiii e e e e e e e e et e e e e e e e eesaabbeeeeeeseenntasaeeaeeeannses 10
6.2 PN [o 11 Y= d D 1LY ol Y ST UPPRRNt 14
7 Kepware Tags IMPIEmMENTAtioNccuiie et e et e e e e et e e e e te e e e s eteeeesstaeeeensaeaeassseeeansaeeeansaneesnsseeeanssseesnnnens 20
7.1 (O T YA [0 =38 o o T I =4SSR 20
8 PackTags Design TemMPlate SOFtWAIre FIlESuuiiiiiiiieciii ettt e e e e e e e st e e e e ata e e e eanaeeessteeeensaeeeennnns 23
F N0 1T Yo [NS PP PURURTRN 24
A.1 Command Tags — SPeC t0 GX WOIKS3 LabIS.......uuuiiiieiieiiieie ettt ettt e e e e et e e e e e e et a e e e e e e eennaeaeseeeesennnraeneas 24
A.2 Status Tags — SPeC t0 GX WOIKS3 LADEIS ...oocoeeeeeieee et e e e e e e e e e ettt r e e e e e e e eaarae e e e e e e e e anraeneas 26
A.3 AdMIn Tags — SPEC t0 GX WOIKS3 LAbBIS ..ccci ittt ettt e e e e e et be e e e e e e e e et be b e e e e e e eensabaesaeeeeenanraeneas 28
¢ MITSUBISHI ELECTRIC Part 3 -1 Engineering Group

A% AUTOMATION, INC.

Revision History

Version

Revision Date

Description

R4 V1.0

January 31, 2016

Release of PackML OEM Implementation Templates Release 4

‘ MITSUBISHI ELECTRIC
A% AUTOMATION, INC.

Part 3 i Engineering Group

Mitsubishi PackML Implementation Templates — Release 4
Part 3: PackTags Design and Implementation

1 Introduction

The purpose of this document is to describe the design considerations and implementation approaches of implementing
PackTags specification in an iQ PLC.

PackTags specification is a part of the overall OMAC PackML standard and defines a set of named data elements used for
open architecture, interoperable data exchange in automated machinery. PackTags are useful for machine-to-machine
(inter-machine) communications; for example between a Filler and a Capper. PackTags can also be used for data exchange
between machines and higher-level information systems like Manufacturing Operations Management and Enterprise
Information Systems.

The use of all PackTags is needed to be consistent with the principles for integrated connectivity with systems using this
same implementation method. Required tags are those necessary (1) for the function of the automated machine or (2) the
connectivity to supervisory or remote systems.

This document describes the implementation of the PackTags template files as a part of the Mitsubishi PackML Template
system.

2 Key PackTags Design Considerations

The PackTags are implemented as a part of the Mitsubishi PackML Template system. The PackML Template system
architecture is described in Part 1 of the Users Guide. Because of the large number of tags required to support the PackTags
specification, an extended memory card maybe required to hold the symbolic information depending on the type of PLC
that is used.

Generally, PackTags data is passed to higher-level information system using OPC protocol on a standard Ethernet-based
communications network. Thus, in addition to the Template System hardware and iQ Works software, a Kepware OPC
server is also integrated to work with the iQ-R PLC to form a total solution set. Kepware KEPServerEX V5.19 with enhanced
Mitsubishi Ethernet Driver is used in the PackML Template system Release 4 implementation.

Following is a list of critical PackTags design considerations:

e The PackTags are implemented in an iQ-R PLC system as global labels and readily available for use by OEM machine
control programs. In other words, the tag values should be accessible and be populated by OEM machine control
programs.

e The PackTags should be accessible by external systems compliant to PackML and PackTags standards.

e The PackTags implementation on iQ-R should be directly usable by users of the iQ system. In other words, all
PackTag labels should be configured and ready for use by users without additional configuration of the labels. All
register assignments should not have to be altered by users of the system.

e Restrictions are placed on the dimensions of the variables to reduce the amount of memory locations that are
consumed to support the tags.

3 PackTags Implementation Considerations

All PackTags are implemented as global labels, and the built-in Ethernet port on the iQ-R PLC CPU is used to connect the iQ
system to Kepware OPC server.

The label names are shortened from the PackTags specification to be used with the iQ-R platform. PackTags are
implemented in three Data Groups: Command, Status, and Admin, and the correlation of standard PackTags names to the
shorten iQ-R labels and the Kepware tags is shown in the Appendix A for reference.

Following restrictions are placed on the dimensions of the labels:

e Theremote interface number (i.e. the total number of upstream and downstream machines) is set to 10.

& MITSUBISHI ELECTRIC Part 3 - Page 1 Custom Solutions Center
A% AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — Release 4
Part 3: PackTags Design and Implementation

e The number of parameters that are given to the unit machine from remote machines is limited to 10. The parameters
are typically needed for coordinating the unit machine or production with other machines.

e The number of parameters that are given to the unit machine locally is limited to 10.
e The number of product types that can be produced on a machine is limited to 5.
e The number of process variables needed by a unit machine for processing a specific product is limited to 10.

e The number of raw materials (ingredients) that are used by a unit machine in the processing of a particular product is
limited to 10.

e The number of parameter tags associated to the local interface (e.g. parameters that are displayed or used on a unit
locally such as an HMI) is limited to 10.

e The number of alarms of a machine is limited to 64.

e The number of alarm history is limited to 256.

e The number of Modes of a machine is limited to 32.

e The number of states in each mode of a machine is limited to 18.

e The number of material used or consumed in a production machine is limited to 10.

e The number of product types that can be processed by a production machine is limited to10.

e The number of product types that can be marked as defective by a production machine is limited to 10.

4 1Q System Configuration

This section documents the configuration of PLC parameters to support the PackTags implementation.

Navigation

—— = ™= Seiog .
) | pevicajtatel Moy Aa Soing i L
= Etanded SRAM Cassatts Setting Moot Mounted
% B et
+ = Hame Soning - Dovice Aron
; ;_.f m’:ﬁ;’.’f:"g',"ds"""“ Duvice Arsa Capociy 143K Wend
M) Service Processing Seting b
Label Ares Copacty ALK o
Latch Label Aros Cagacity BK Weed
File Stonage Aea Copacity 0K Word
Indlex Regutes Seting OwvicalL <L
Fiekesh Memary Seting
Dirvice Lanch Interval Suting
@ Fairnar Setng Devies Seting <Detaod Seting>
intzenal Buffer Capacity Sofing Lech Type Seiting of Latch Typa Label Latch |
18 RAS Sofing Index Register Setting
7 8 Program Soting - Points Seling
: %;‘:‘i.‘:in: Mulipla CPU s &
£ aiath Samng hasvaan Mulpia CF =
£ 1% Rauteg Suting g kgl 0 Fsh
. Leng bndex Register (L) 2Ports
Local Sutting -
T
Plaasa a1 when changs the capacity of davice /labsl mamory aach aea s
Sat Exiended SRAM Cagsetie Settng’ whan maended 5 mountad, and P i maemary.
i Ligt | Find Rasull Chack | Rastcs the Detouk Settings

Figure 1 — PLC CPU Parameters for Memory Configuration

4.1 Device Area and Label Area

Because of the large number of tags required to support the PackTags specification, a large PLC Device area and Label
Area needs to be assigned. In R4 Template Solution, 348K and 238K Words are allocated to Devices and Label Areas
respectively in the RO8CPU to accommodate the requirements.

0 MITSUBISHI ELECTRIC Part 3 - Page 2 Custom Solutions Center
A7 AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — Release 4
Part 3: PackTags Design and Implementation

Depending on the type of PLC used in the system, the capacity of memory may vary. However, configuration with 348K
Word devices and 238K Word labels is sufficient to address the total number of PackTags and other system labels that
are used in the PackML Template system.

Setina e Lt fagon]
8 Salie It 3 AR i Itom Sotting
' |- Davica/L abel Memary Ama Setting
P Extended SHAM Cassetle Selting et Mounled
B0 DovicelLabel Momory Ares Capacity Setling
+ 23 Name Seting = Device Area
4] Operation Retated Sating L eemprrony
4 = Intomupt Sesings “h;u pacey 4
{158 Service Processing Setling E b
i 05 Lobel Area Capacil 238K Word
58 Fito Softing y
Mosmary/Davice Soting Late 160 Capacity 3
h Label Area Cay K Weed
Do bl Mamory Area Seting Fila Stomaga Aren Capacity 0K Word
Sl Davicol v Centi < >
Device Setting <Detafed Setiings
Infernal Bulfer Capacity Sefing Laich Type Setting of Lasch Type Label Latch{1)
+ Wl FAS Settng
+ 1 Program Sefing Poinis Seiting
£ 1] sﬁcsm?g i Total Pants 24 Word
: g::::::h:::;:ﬁ between Multple CPU Inde Registar 2] 20 Points
iy Long Index Register (L7) 2 Pints
Local Setting
= Points Setting
Local Index Regrster (2) OFonts
Lecal Lang Index Register (LZ) OFcints
= Stat
Explanation

Plaase setwhan change the latch type of latch typa labal. device paints, and se1 the local device. [alch safting o

Figure 2 — PLC CPU Device Details

Selecting the Device Setting <Detailed Setting> will reveal the detailed allocation of PLC devices to the PackTags.

Jtem Sira Device Local Device ! Latch Latch
Points Range Start End Points (1) 2)
Input % Oto 2FFF
Output Y 12K 0to2FFF
Internal Relay M 30K 0to30719 No Setting No Setting
Link Relay B 3K Oto IFFF No Setting No Setting
Special Link Relay SB 2K Oto7FF
Annunciator F 2K Oto2047 No Setting No Setting
Edge Relay v 2K 0to2047 No Setting No Setting
Step Relay S 0
Timer T 1K 0to1023 No Setting No Setting
Long Timer LT 1K 0to1023 No Setting No Setting
Retentive Timer ST 0 No Setting No Setting
Long Retentive Timer LST 0 No Setting No Setting
Counter c 512 0Oto511 No Setting No Setting
Long Counter Lc 512 0to511 No Setting No Setting
Data Register D 329K 0to 336395 No Setting No Setting
Link Register w 5K 0to 13FF No Setting No Setting
Link Special Register SW 2K Oto7FF
Latch Relay L 8K 0to8191 No Setting
Total Device 347 5K Word 0.0K Word
Total Word Device 342 5K Word 0.0K Word
Total Bit Device B80.0K Bit 0.0K Bit

In this PackTags implementation, most labels are assigned to D registers M bits. Sufficient D and M devices are
allocated to accommodate the requirements. It is necessary to pre-assign the Device Addresses because the Kepware
OPC server needs to refer to the memory location by addresses and not label names at this time.

4.3 Built-in Ethernet Port Setting

The built-in Ethernet port of the CPU module is used to communicate with the Kepware OPC server. The Ethernet port
should be configured properly as described below and shown in Figure 3.

e Select Module Parameter -> Own Node Settings
e Set the proper IP address, Subnet Mask, and Default Gateway when appropriate.
e Set “Enable/Disable Onlne Change” to “Enable All (SLMP)

0 MITSUBISHI ELECTRIC Part 3 - Page 3 Custom Solutions Center
A7 AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — Release 4
Part 3: PackTags Design and Implementation

e Set “Communicate Data Code” to “Binary”

EM_Template_Event_G... = OEM_Template_PackML_... ';5OEM_Template_PacIt.l»ﬂL_... #' ROSCPU CPU Parame 4 * =
Setting ltem List Setting ltem
e It Setti
polec [Inputthe Setting em to Search | 5 = e
Module Configuration SR STy
Parameter Setting Method Parameter Editor
Program cpy
o9 J °F B2 =1 IP Address
UN 42 Basic Seffings IP Address 192.163. 3. 3%
7~ @ Own Node Sefings Subnet Mask 255255 255 0
i.- @ External Device Configuration 192 188 3]
|y Application Setiings Bt ataang . . .
Enable/Disakble Online Change Enable All (SLMP}
Communication Data Code Binary
Opening Method Open by Program
=| External Device Caonfiguration
External Device Canfiguration <Detailed Setting=

Setthe IP address of the default gateway (the device which the own node passes through to -

Cr o access a device of another network). Please set subnet address of default gateway so thatitis
e Comment E
the same with the one of host station
Memory [Setting range]
Initial Value -

-0.0.0.1 to 223255255 254 (in decimal)

ftem List | Find Result [Check | [Restorathe Default Settings

U Parameter Apply

B Module Parameter BEss

{2 Memory d Parameter
& Module Information

£ Remote Password

Figure 3 — Configuring the Built-in Ethernet Port

e Click the “External Device Configuration” <Detailed Setting> to configure the channels to communicate using
TCP, UDP, SLMP, and port number to the desired value as shown in Figure 4.

O In the PackML Template System architecture, the port number is set at hexadecimal number 5001(or
decimal value 20481) for communication between the GOT and the PLC with UDP protocol.

0 The Port Number 5002 is configured to use TCP for communication with the Kepware OPC server.

0 MITSUBISHI ELECTRIC Part 3 - Page 4 Custom Solutions Center
A7 AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — Release 4
Part 3: PackTags Design and Implementation

Detect Now
Fixed Buffer PLC Sensor/Device
No. Model Name Communication Protocol | Send/Receiv
Method e Setting 1P Address Port No. MAC Address Host Name IP Address

w I ost station 192.168.3.39
=] 1 SLMP Connection Module SLMP TCcP 192.168.3.39 20482
] 2 SLMP Connection Module SLMP uop 192.168.3.39 20481
e 3 MELSOFT Connection Module | MELSOFT Connecti TCP 192.168.3.39
4 MELSOFT Connection Module |MELSOFT Connectic TCP 192.168.3.39
5 MELSOFT Connection Module | MELSOFT Connecti TCP 192.168.3.39
6 MELSOFT Connection Module | MELSOFT Connecti TCP 192.168.3.39

7 MELSOFT Connection Module | MELSOFT Connecti TCP 192.168.3.39
8 MELSOFT Connection Module | MELSOFT Connecti TCP 192.168.3.39
| 9 MELSOFT Connection Module |MELSOFT Connectk Tcp 192.168.3.39
10 MELSOFT Connection Module | MELSOFT Connectic TCP 192.168.3.39
11 MELSOFT Connection Module | MELSOFT Connecti TCP 192.168.3.39
12 MELSOFT Connection Module | MELSOFT Connectic TCP 192.168.3.39
13 MELSOFT Connection Module [MELSOFT Connectic TCP 192.168.3.39
] 14 MELSOFT Connection Module | MELSOFT Connectic TCP 192.168.3.39
15 MELSOFT Connection Module |MELSOFT Connectic TCP 192.168.3.39
e 16 MELSOFT Connection Module | MELSOFT Connectic TCP 192.168.3.39

A

i

Connection Connection Connection Connection Connection Connection Connection Connection Connection Connection Connection Connection Connection Conneclion Connection Connection
No.1 No.2 No.3 No.4 No.5 No.6 No.7 No.8 No.9 No.10 No.11 No.12 No.13 No.14 No.15 No.16

Host Station
Connected Co|
unt16

PETTY

SLMP Co SLMPCo MELSOF MELSOF MELSOF MELSOF MELSOF MELSOF MELSOF MELSOF MELSOF MELSOF MELSOF MELSOF MELSOF MELSOF
nnecion nnection T Connec TConnec TConnec TConnec TConnec TConnec TConnec TConnec TConnec TConnec TConnec TConnec TConnec T Connec

Madula Modila tinn Madi fan Madetion Madi fan Madn finn Mada finn Madi fan Made fan Madi e Madn finn Madi fan Madin fan Madi fion Mado o Mad,

< Il

Figure 4 — PLC Communication Channel Configuration for GOT and OPC Communication

0 MITSUBISHI ELECTRIC Part 3 —Page 5 Custom Solutions Center
A% AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — Release 4
Part 3: PackTags Design and Implementation

5 GX Works3 Label Implementation

As shown in the Appendix, all the labels that are required to support the PackTags standard are implemented in the iQ-R
PLC using GX Works3 global labels. The PackTags labels are grouped into three categories: Command labels, Status labels,
and Administrative labels. Ten different structured data types are also created to support the label definitions.

»

™ Project

£l Module Configuration
= &= Program
= & FB/FUN

= & Label

= ¥ Global Label

e

= OEM_Template_Event GOT_Keys
OEM_Template_Event_Labels
OEM_Template_PackML_GOT_Keys
iz OEM_Template_PackML_Labels
%= PackML _FB
% PackML PackTags_Admin
PackML_PackTags_Command
= PackML_PackTags_Status
= % Structured Data Types
*; PackMLFB
4 SDT _Event
i SDT_EventCfg
e SDT_EventStatus
e SDT_EventSummation
4 PackML_Module Cmd_SDT
HE PackML _Admin_Alarm_SDT
HF PackML_Admin_Count SDT
4 PackML_Admin_Parameter SDT
i PackML_Cmd_Parameter SDT
i PackML_Cmd_Pdt_Type SDT
i PackML_Cmd_RemiIntf_Type SDT =
i PackML_Sta_EquipInterlock_SDT
HF PackML Sta_Parameter SDT
i PackML_Sta_Pdt_Type SDT
g PackML_Sta_Remintf_Type_SDT
= @ Device

11

z B Device Comment

= = Device Memaory -

Figure 5 — Global Label Groups and Structure Data Types

5.1 Command Labels — PackTags_Command
The Command labels are created in the Global Label section with the proper data types. The feature of Structure of
Structures Data Type is used to align the PackTags labels with the PackML Standard.

0 MITSUBISHI ELECTRIC Part 3 - Page 6 Custom Solutions Center
A7 AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — Release 4

Part 3: PackTags Design and Implementation

Label Name Data Type Class Assign (Device/Label)
1 gvd_Cmd_UnitMode Double Word [Signed] ... [VAR_GLOBAL D150000
2 |gvb_Cmd_UnitModeChang|Bit ... [VAR_GLOBAL M2400
3 |gvl_Cmd_MachSpeed FLOAT [Double Precision] ... [VAR_GLOBAL D150002
4 |gvdu_Cmd_Materiallnterlo{Double Word [Unsigned]/Bit String [32- ... [VAR_GLOBAL D150006
5 |gvd_Cmd_CntrlCmd Double Word [Signed] ... [VAR_GLOBAL D150008
6 gvb_Cmd_CmdChangeReqdBit ... [VAR_GLOBAL M2401
7 |gvsta_Cmd_Remintf PackML_Cmd_Remlntf_Type_SDT(0..9) ... [VAR_GLOBAL Detailed Setting
8 |gvsta_Cmd_Parameter |PackML_Cmd_Parameter_SDT(0..9) ... [VAR_GLOBAL Detailed Setting
9 gvsta_Cmd_Pdt PackML_Cmd_Pdt_Type_SDT(0..4) . [VAR_GLOBAL Detailed Setting
10

The structured data types used

Figure 6 — PackTags_Command Global Labels

in the Command Labels are:

PackML Cmd Remintf Type SDT

Label Name Data Type
1 |d_Number Double Word [Signed]
2 |d_CmdCntlNo Double Word [Signed]
3 |d_Cmd_Value Double Word [Signed]
4 |sa_Parameter PackML_Cmd_Parameter_SDT(0..9)

PackML Cmd Parameter

SDT

1 [d1D Double Word [Signed]

2 s_Name String(34)

3 s_Unit String(34)

4 | _Value FLOAT [Double Precision]

PackML Cmd Pdt Type S

DT

1 |d_Product_ID

Double Word [Signed]

2 sa_Proccess_Var

PackML_Cmd_Parameter_SDT(0..9)

3 sa_lng

PackML_Cmd_Ing(0..9)

PackML Cmd Ing

1 |d_Ing_ID

Double Word [Signed]

2 |sa_lng_Para

PackML_Cmd_Parameter_SDT(0..9)

5.2 Status Labels — PackTags_Status
The Status labels are created in the Global Label section with the proper data types.

Label Name Data Type Class Assign (Device/Label)

1 gvd_Sta_UnitModeCurrent Double Word [Signed] .. VAR _GLOBAL D180000

2 |gvb_5ta_UnitModeChangeRequested Bit .. [VAR_GLOBAL M2702

3 |gvb_Sta_UnitModeChangelnProcess Bit ... [VAR_GLOBAL M2703

4 |gvd_Sta_StateCurrent Double Word [Signed] .. |VAR_GLOBAL D180002

5 |gvd Sta_StateRequested Double Word [Signed] .. VAR GLOBAL D180004

6 |gvb_Sta_StateChangelnProcess Bit ... [VAR_GLOBAL M2704

7 |gvl_Sta_MachSpeed FLOAT [Double Precision] .. [VAR_GLOBAL D180006

8 |gvl_Sta_CurMachSpeed FLOAT [Double Precision] .. VAR_GLOBAL D180010

9 |gvdu_Sta_Materiallnterlocks Double Word [Unsigned]/Bit String [32-bit] . |VAR_GLOBAL D180014

10 |gvst Sta_Equipmentinterlock PackML_Sta_Equiplnterlock_SDT .. |[VAR_GLOBAL Detailed Setting
11 |gvsta_Sta_Remintf PackML_Sta_Remintf_Type_SDT(0..9) ... [VAR_GLOBAL Detailed Setting
12 |gvsta_Sta_Parameter PackML_Sta_Parameter_SDT(0..9) ... [VAR_GLOBAL Detailed Setting
13 |gvsta_Sta_Pdt PackML_Sta_Pdt_Type SDT(0..4) .. IVAR_GLOBAL Detailed Setting

Figure 7 — PackTags_Status Global Labels

‘ MITSUBISHI ELECTRIC
A% AUTOMATION, INC.

Part 3 —Page 7

Custom Solutions Center

Mitsubishi PackML Implementation Templates — Release 4
Part 3: PackTags Design and Implementation

The structured data types used in the Status Labels are:

PackML Sta Remintf Typ

e SDT

1 [d_Number Double Word [Signed]
2 |d_CmdCntINo Double Word [Signed]
3 |d_Cmd_Value Double Word [Signed]

4 |sa_Parameter

PackML_5ta_Parameter_SDT(0..9)

PackML Sta Equiplinterlock SDT

1 |b_Blocked

Bit

2 |b_Starved

Bit

PackML Sta Parameter SDT

1 [d_ID Double Word [Signed]

2 |s Name String(34)

3 s Unit String(34)

4 || _Value FLOAT [Double Precision]
5

PackML Sta Pdt Type SD

T

1 |d_Product ID

Double Word [Signed]

2 |sa_Proccess_Var

PackML_Sta_Parameter_SDT(0..9)

3 |sa_lng

PackML_Sta_Ing(0..9)

PackML Sta Ing

1 [dIng_ID

Double Word [Signed]

2 =sa_lng_Para

PackML_Sta_Parameter_SDT(0..9)

5.3 Administrative Labels

The Administrative labels are created in the Global Label section with the proper data types.

00|~ || | & M=

Label Name Data Type Class Assign (Device/Label)
gvst_Adm_Parameter PackML_Admin_Parameter_SDT(0..19) ... VAR_GLOBAL ~ |Detailed Setting
gvsta_Adm_Alarm PackML_Admin_Alarm_SDT(0..63) ... [VAR_GLOBAL ~ |Detailed Setting
gvd_Adm_AlarmExtent Double Word [Signed] .. |VAR_GLOBAL » |D114168
gvda_Adm_ModeCurrentTime Double Word [Signed](0..31) ... |[VAR_GLOBAL - |D114170
gvda_Adm_ModeCumulativeTime |Double Word [Signed](0..31) ... |[VAR_GLOBAL -~ |D114234
gvda_Adm_StateCurrentTime Double Word [Signed](0..31,0..17) ... |[VAR_GLOBAL ~ |D114298
gvda_Adm_StateCumulativeTime |Double Word [Signed](0..31,0..17) .. VAR_GLOBAL ~ |D115450
gvsta_Adm_ProdConsumedCnt PackML_Admin_Count_SDT(0..9) ... [VAR_GLOBAL ~ |Detailed Setting

9 |gvsta_Adm_ProdProcessedCnt PackML_Admin_Count_SDT(0..9) ... [VAR_GLOBAL ~ |Detailed Setting
10 |gvsta_Adm_ProdDefectiveCnt PackML_Admin_Count_SDT(0..9) ... |VAR_GLOBAL - |Detailed Setting
11 |gvd Adm_AccTimeSinceReset Double Word [Signed] ... |[VAR_GLOBAL -~ |D117862
12 |gvl_Adm_MachDesignSpeed FLOAT [Double Precision] .. |[VAR_GLOBAL - |D117864
13 |gvd_Adm_StatesDisabled Double Word [Signed] .. VAR_GLOBAL - |D117868
14 |gvst_Adm_AlarmHistory PackML_Admin_Alarm_SDT(0..255) ... [VAR_GLOBAL ~ |Detailed Setting
15 | gvd_Adm_AlarmHistoryExtent Double Word [Signed] .. |VAR_GLOBAL ¥ |D131182
16 |gvst_Adm_StopReason PackML_Admin_Alarm_SDT ... |VAR_GLOBAL - |Detailed Setting
17 |gvst_Adm_AlarmWarning PackML_Admin_Alarm_SDT(0..63) .. [VAR_GLOBAL + |Detailed Setting
18 |gvwa_Adm_PACDatelime_Date |Double Word [Unsigned]/Bit String [32-bit](0..6) . |[VAR_GLOBAL - |D134064

Figure 8 — PackTags_Admin Global Labels

‘ MITSUBISHI ELECTRIC
A% AUTOMATION, INC.

Part 3 —Page 8

Custom Solutions Center

Mitsubishi PackML Implementation Templates — Release 4
Part 3: PackTags Design and Implementation

The structured data types used in the Admin Labels are:

PackML_Admin_Parameter_SDT

~ || PN —=

Ib_Trigger Bit

d_ID Double Word [Signed]
d_Value Double Word [Signed]
s_Message String(34)

d_Category Double Word [Signed]

wua_DateTime

Double Word [Unsigned]/Bit String [32-bit](0..6)

wua_AckDateTime

Double Word [Unsigned]/Bit String [32-bit](0..6)

PackML_Adm_Alarm_SDT

1 |dID Double Word [Signed]

2 |s_Name String(34)

3 |s_Unit String(34)

4 || Value FLOAT [Double Precision]

PackML_Adm_Count_SDT

]
2
3
4
D

(ID Double Word [Signed]
Name String(34)

Unit String(34)

Count Double Word [Signed]
AccCount

Double Word [Signed]

‘ MITSUBISHI ELECTRIC

A% AUTOMATION, INC.

Part 3 —Page9

Custom Solutions Center

Mitsubishi PackML Implementation Templates — Release 4
Part 3: PackTags Design and Implementation

6 Kepware Server Configuration
An OPC server is required to connect the PackTags implemented in the iQ PLC to an external world such as a MES system or

an HMI.

Kepware OPC server is used for the PackTags implementation because of its functionality and capable Mitsubishi driver to
connect with Mitsubishi devices. It also supports long tag names and this capability allows the shortened label names to be
mapped to the names as specified in the PackTags specification.

6.1 Adding a Channel of Communication
e Start the Kepware KEPServer Ex software and click to add a channel. In the example, the Channel Name is

PackML.
8 KEPServerfX - Configuration [Untitled] =B
Ll ...« |
B Ciick to add a chonnel]
[hiew Channei - identification =)
A channal nama can be from 110 256 characieds in
langth
‘ Mamas can not contain penods, double quotations
of start with an undarscons
Channel rams
PackML
Doat > Cancel Halp
I Date Torme Source Event
Ready Offine
Figure 9 — Adding Channel in Kepware
¢ MITSUBISHI ELECTRIC Part 3 —Page 10 Custom Solutions Center

A% AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — Release 4
Part 3: PackTags Design and Implementation

e Select the Device Driver to be “Mitsubishi Ethernet” from the drop down list

i KEPServerEX - Configuration [Untitled] = B %
File Edit View Tools Runtime Help
D dd|wtE =l
B Click to add a channel
New Channel - Device Driver %2
Seloctthe device dives you want o assign 1o the channol
Tho dvop-down st ol s the fall the
deivars that are installed on your system
Device driver
| Mitsubishi Ethemet -
Enable dagnostics
[<Back | Nemr | [camel | [Hew
Date Time Saurce Event |
Ready Offine

Figure 10 — Adding Device Driver to the Channel

o Define the Network Adapter of the system where the OPC Server is running on. Select the “Default” will use
the Ethernet port of the computer the Kepware OPC server is running.

ﬁKfPServeer-r‘nnﬁquralinn [Untitled] e= o) &
Eile— EQHT - Yiew—Tools Runtime - Help
DB de|®BEG 2
S Click to add a channa!
New Channel - Network Interface "
This channal is config icate over a
network You can select the notwork adapies that
e driver should use from the st below,
Select Defaull if you want the operating system i
choase hie network adapar i you
Detwork Adapter
[Dataun =
[<Back [Med> | [cancel | [Hew
Date Time Saurce Event |
Ready Offine

Figure 11 — Selecting the Network Adaptor where the OPC Server is Running

0 MITSUBISHI ELECTRIC Part 3 - Page 11 Custom Solutions Center

AV AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — Release 4
Part 3: PackTags Design and Implementation

e At the “Write Optimization” screen, a user can determine which method should be used to give the optimized
performance of the server for his system. In this example, default values are used.

& KEPServerEX - Configuration [Untitled] =B X
e Edit View Tools Runtime Help
JEdd| %

@ Click to add a channe

New Channel - Write Optimizations =

YWau can control haw the S0rver pOCE50S Wikes on this
channal Setthe optimization mathad and write-to-taad
dhuty cycle below

Mote: Wiiting cnly ths Lakast value can At basch
processing of ha equivalont
Optmization Methad
Wirits all valuos o all tags
Writs anly Latost valug for pon-booloan tags
@) Write only [atest valua for all tags

Duty Cycla
Berform 10 == waities for every 1 ead
<Back | Mot > Cancel Help
Date Time Source Evenl
Ready Offine

Figure 12 — Selecting Optimization Method

0 MITSUBISHI ELECTRIC Part 3 - Page 12 Custom Solutions Center
A7 AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — Release 4
Part 3: PackTags Design and Implementation

e Click “Next” to use the default “Replaced with Zero” to handle Non-Normalized Float.

i KEPServerEX - Configuration [Untitled] = B %
File Edit View T.a.:.u. R."'r;r-r.e .-'e!.-;.
S R I R il
S Click to add a channa!
New Channe! - Non-Normalized Float Handling %2
Choose how this driver handles non-nomalized Soating paint
values.
Selecting 'Unmodifed handling delivers the non-nomalized
walue, while ‘Replaced with zerc’ changes non-nomalized
foating paint values to zero,
Mor-nomalized values | |
shoudbe: (Replacedwihzeio)
[<Bak | Nea» | [camcel Hep |
Date Time Saurce Evenl
Ready Offfing
: ups s W :
e Click the “Finish” to complete adding the Channel.
i KEPServerEX - Configuration [Untitled] = B X
File Edit View T.ac-li. R-,"r;r-r.e --'e!r:.
D@ deRBEnu |
S Click to add a channa!
MNew Channe! - Summary %2
i the following infarmasan i comect cick ‘Finish’ to save
tha aattings for the new channal
Mame: PackML
Dewice Diver. Misubishi Ethamet
Diagnasses Disabled
Wit Opimizason
Writir anly Eatost value for all thgs
10wt po nodd
Mon-naemakead float handling typo
Replacad with 2010
[<Bak [Fesn | [camcel Helw |
Date Time Saurce Evenl
Ready Offfing

Figure 13 — Completing OPC Channel Configuration

‘ MITSUBISHI ELECTRIC
AV AUTOMATION, INC.

Part 3 —Page 13

Custom Solutions Center

Mitsubishi PackML Implementation Templates — Release 4
Part 3: PackTags Design and Implementation

6.2 Adding Devices

After the channel is defined, devices that need to be monitored can be added to the channel. Click to add a device:

Figure 14 — Adding Device to Channel

{8 KEPServerEX - Configuration [Untitled *] T]
[Fle Edit View Tools Runtime Help — — — 1
JSdeg w9g Fin XD x
= Devi- ' Model ID Description
£ Crick 1o add a device EClick to add a davice
| & & O
| Date Time Source Event
| Readty Offfine

The configuration of the Built-in port is done first with the device name of “QPLC Builtin Port”

Eant View Tools Runtime Help

J 5

g 90 = | & 0 x
= 95 PackML Devi. /| Model ID Description
£ Crick 1o add a device [ial8] el divice,
New Device - Name
Adi be from 110 256
langth
Names ol contain periods. double g
o star with an underscore.
Device pame:
RPLC Busitin Port
Mot > Cancel Hulp

ﬁ KEPServerEX - Configuration [CAUsers\Jerry Yer\Documents\EG Projects\PackMI\OPC Projects Kepware\Te_ | — =

b4

P

_I Date

Time Source Evenl

Ready

Offime

Figure 15 — Naming the Communication Device

‘ MITSUBISHI ELECTRIC
AV AUTOMATION, INC.

Part 3—Page 14

Custom Solutions Center

Mitsubishi PackML Implementation Templates — Release 4
Part 3: PackTags Design and Implementation

e Select Device Model to be “Q Series” from the drop down list even though an iQ-R PLC is being connected. The
Kepware OPC server will be updated to support iQ-R series natively.

ﬁ KEPServerEX - Configuration [CUsersJerry Yer) Documents\EG Projects\PackMLVOPC Projects Kepware\Te_ | =— =
File Edit View Tools -
J 5 g9 3 -y
— 95 PackML

b4

Buntime Help

Devi. Model 1n] Description
{0 Click 10 add a device EACHck to add a device
New Device - Model £

The device you are defining uses 3 device driver

that supparts mors than one model The list below
shaws all supponied modets

Select a model thel best describes the device you

are debning

Device modet

[CE |

<ock]| boty | [oComet] [otip

Date Time Saurce
Ready

Event

Offfine

Figure 16 — Selecting the Mitsubishi Device Type

e Define the Device ID to be “192.168.1.40:255.”

0 The normal format of configuring the Device ID for a QPLC in the Kepware server is “IP Address :
Network Number : Station Number” However, the Built-In port cannot be addressed using network
number and station number. Thus, it is assuming the network number to be zero (thus omitted from
the Device ID format) and a general station number of 255.

ﬁ KEPServerEX - Configuration [CUsersyJerry Yer) Documents\EG Projects\PackMLVOPC Projects Kepware\Te_ | =— = %
File Edit View Tools Runtime Help
g a5 3 2|
= 5 PackML Dewi.. Model 1] Description
{0 Click 10 add a device EACHck to add a device
New Device - 1D 1 [=
The dewice you are defining may be mulbdropped as pan
iof 3 nedwork of o In order o with e
GE?ES.NMUSIDBB!SO‘QHEHBIIHIQUGID
Your documentabon for the device may referlo ths as &
FNetwork 107 or "Network Address.”
Device IO
152168339255
<gock | mMews | [comw | [rew
e
Date Time Source Event
Ready Offiine
Figure 17 — Entering the Device ID
¢ MITSUBISHI ELECTRIC Part3—Page 15

Custom Solutions Center
A7 AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — Release 4
Part 3: PackTags Design and Implementation

e Click “Next” to select the default Scan Mode

ﬁ KEPServerEX - Configuration [CUsersJerry Yer) Documents\EG Projects\PackMLVOPC Projects Kepware\Te_ | =— = %
File Edit View Tools Runtime Help -
DB de|®BEG 2 .
= 95 PackML Devi. /| Model ID Description
13 Click 10 add a device EACHck to add a device
New Device - Scan Mode =
The device’s p may be
provide updates with cached data or device data
The scan mode is used 1o overmide hie mierval hat tags
are sulomateally ready by the server
Brovide iniial updates from cache
Scan Mode:
EMPecl:hdwmdumwh =)
<Hack Mot > Cancel Help
& & O
Date Time Saurce Evenl
Ready Offfing

e The user can configure the timing parameters to optimize the communication performance. In this example,
default values are used:

ﬁ KEPServerEX - Configuration [CUsersJerry Yer) Documents\EG Projects\PackMLVOPC Projects Kepware\Te_ | =— = %
File Edit View Tools Runtime Help -
JB 48|90
= 95 PackML Devi. /| Model ID Description
13 Click 10 add a device EACHck to add a device
New Device - Timing =
parameters hat you can conbgure h
Connect imecut 1 2 seconds
B 250 A mil
Eail afer: 3 L SuCCRSSv BMeouss
Iler stdelay |0
<hocs J| dwar] [Conow] [_rww.
& & O
Date Time Saurce Evenl
Ready Offfing

Figure 18 — Selecting the Timing Parameters

e A user can also enable the auto demotion of a device when communication is lost. One should configure this
parameter according his application needs. In this example, auto-demotion is not configured.

0 MITSUBISHI ELECTRIC Part 3 - Page 16 Custom Solutions Center
A7 AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — Release 4
Part 3: PackTags Design and Implementation

ﬁ KEPServerEX - Confiquration [CAUsers\Jerry Yer\Documents\EG Projects\PackML\OPC Projects Kepware\Te_ | =— = =
File Edit View Tac-ls. R-."r--;'-e Help - |
D@ due0cid 3| : |
= 95 PackML

Devi.. Model] Description
{0 Click 10 add a device

BAChck to add a device

New Device - Auto-Demation =

'¥ou can demale a device for a spacific panad upon
communicatons failures. Duing this sma no read request (wiites
 applicable) will be sentto the device. Demeang a faded
davice will prevent staling communicatans with other devices
on the channel

Enable auto dovice demation an communication faduro s

<dock | dew> Goncel Help

[+ o

Date Time Saurce Evenl

Ready Offfing

Figure 19 — Configuring Auto-Demotion Function

e The default of the device is set at First Word Low. This configuration is correct for Q PLC. Ensure the check box
is selected.

ﬁ KEPServerEX - Configuration [CA\Users\Jerry Yer\Documents\EG Projects\PackML\OPC Projects Kepware\Te_ | =— = =

File Edit View Tools Runtime Help

I e |
= 7 PackML Devi.. Model 1D Description
13 Click 10 add 3 device. PACHck to add a device
New Device - First Word Low =
The state of the check box balow will determing how
the Mitsubishi Emamet driver interprats 32 bit
wvalues
When the box s checked. the frst regrstes used o
conskucta 32 bil value will be treated a3 e low
word
1 Erstword law
<gock | mot> | [Como | [rwp
[+ o
Date Time Source Event
Ready Offiine

Figure 20 — Selecting Word Order

e Select the IP protocol to TCP/IP and the port number to be 20482 (i.e. 0x5002) as configured earlier for the
Built-in Ethernet port in Section 4.3

0 MITSUBISHI ELECTRIC Part 3 - Page 17 Custom Solutions Center
A7 AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — Release 4
Part 3: PackTags Design and Implementation

I KEPServerEX - Configuration [CAUsers\Jerry ¥er\Documents\EG Projects\PackMLVOPC Projects Kepware\Te_ = [2
File Edt Yiew Tools Runtime Help -
DB de|®0nEu 3| el
= 95 PackML Devi. '~ Model 1D Description
13 Click 10 add 3 device. EACHck to add a device
New Device - Communications Parameters =
Select the Ethamet pratocol used by the device.
Setthe port rumber the device is configured b use.
The 5001 for TCPP
UoP.
PProocol | TGRAR. -
Pon Mumben 20482
[cBack.)| Med> | | Coved | | Hep
[+ o
Date Time Source Evenl
Ready Offfing

Figure 21 — Configuring IP Protocol and Port Number

e Select the proper time synchronization with the PLC per application requirements. In the example, no
synchronization method was used.

I KEPServerEX - Configuration [CAUsers\Jerry ¥er\Documents\EG Projects\PackML\OPE Projects Kepware\Te_ = [2
File Edt Yiew Tools Runtime Help -
DB de|®0nEu 3| :
= 95 PackML Devi. '~ Model 1D Description
13 Click 10 add 3 device. EACHck to add a device
MNew Device - Time and Date Synchronization =
Sotsma insneval for synthecnizing the PLE Sena with
the System tma
Sotthe thad and Abschits Sy
[Tima or Syncheonizason intarval
Mote This funcion is only avadable for Q Senes
Synchionezation Method [Dusabled -
Absolute Syne Time
Synchrangaion [nsarval B manutes
[cBack.)| Med> | | Coved | | Hep
[+ o
Date Time Source Evenl
Ready Offfing

Figure 22 - Selecting Synchronization Method with PLC

0 MITSUBISHI ELECTRIC Part 3 - Page 18 Custom Solutions Center
A7 AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — Release 4
Part 3: PackTags Design and Implementation

e Select “Finish” to complete adding the device.

s Edit View Tools
JESda|®
~ 9 PackML

Buntime Help

{0 Click 10 add 3 device

New Device - Summarny

Devi.. Model n} Description

it following SoMtings i cormect chick ‘Finish' 1o begin
using $he new dovice

Name: RPLC Builiin Port
Modal O Seres
D 192168 3.36:255

Provide initial updates from cache: Mo
Scan Mode: Respact client spacifisd scan rate

Connect Timecat 1 Sec
Request Timeout 250 ms
Fad after 3 aRampts

Auto-Demation: Disabled

ﬁ KEPServerEX - Configuration [C\Users\Jerry Yer\ Decuments\EG Projects\PackML\OPC Projects Kepware\Te_ = 1= %

<Hack Fimsh Cancel Hulp
_I Date Time Saurce Evenl
Ready

Offime

Figure 23 — Completing the Adding Device Process

‘ MITSUBISHI ELECTRIC

AV AUTOMATION, INC.

Part 3 —Page 19

Custom Solutions Center

Mitsubishi PackML Implementation Templates — Release 4
Part 3: PackTags Design and Implementation

7 Kepware Tags Implementation

7.1 Creating the Tags

OPC tags can be added manually one at a time. With the large number of tags for the PackTags implementation, it is easier
to create the tags in Excel worksheets and import them to the OPC server. For the PackTags implementation, all OPC tags

are created in Excel and be imported.

Three tag groups are created for each device for easy monitoring and sorting. The three tag groups are named

“Command”, “Status”, and “Admin.”

e Right click on a Device and select “New Tag Group...”

Sets Kepuare)\Te_ [ieonid = .S

Eile Edit View Tools Runtime Help
J 5 R R i e B & 4 *
B PackML Tag Name
’

- il
bt [New Tag Group

=1 New Tag

Import CSV..

Export CSV...
& Qi CrfX
43 Copy CirisC
A Delete Del

Diagnostics
5 Properties.

Adddress ||

squired, but are browsable by O

Date Time Source Evenl

Offiine

Figure 24 — Creating Tag Groups

‘ MITSUBISHI ELECTRIC Part 3 —Page 20

A% AUTOMATION, INC.

Custom Solutions Center

Mitsubishi PackML Implementation Templates — Release 4
Part 3: PackTags Design and Implementation

e Define the Group Name to be “Command.”

ﬂ KEPServerEX - Confiquration [CALsers\Jerry Yer\Documents\EG Projects\PackMUVOPC Projects Kepware\Te. | = =
L &5 | % i P R PR x
| =% PackML Tag Name Address
™ RPLC Builtin Port L | ag. Tags are not required, but are browsable by O
| i 1
| New Tag Group 2
|
0%
Mame. Command
Cancol |
Help |
|
[# & = e -
I Date Time Source Evenl
Ready Offing

Figure 25 — Adding the Command Group

e Repeat the steps and define Tag Groups.

ﬂ KEPServerEX - Configuration [CAUsers\lerry. Yer\Documents\EG Projects\PackMINOPC Projects KenwarE\TP_'_E'___l.f—;."‘ d“_
file Edit View Tools Buntime Help =
JSda| % 5 ¥4 “
B PackiL Tag Name Address
M RPLC Builtin Port %2 Click to add a stalic tag. Tags are not required, bul are browsable by O
23 Admin
2 Command
L) Status

_I Date Time Saurce Event

Figure 26 — Adding Other Tag Groups

0 MITSUBISHI ELECTRIC Part 3 - Page 21 Custom Solutions Center
A% AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — Release 4
Part 3: PackTags Design and Implementation

e Right click on one of the groups and select “Import CSV...” to import the tags for the particular group.

File Edit View Tools Runtime Help
JSdg|ROGUF 92 pax

=& PackML Tag Name Address
= I RPLC Builtin Port W2 Click to add a static tag. Tags are not required, but are browsable by ©
4 o ew Tag Group
G5y 4 NewTag

Jmpert €SV

Export CSV..
4 Cil+X
da Lopy Qi+ C
X Delete Del
= Properties.

G . 5

Date Time Saurce Event
Ready Offfing

Figure 27 — Importing Tags from CSV Files

e Select the proper tag files and complete the import process for this group. Repeat the same steps to import
the rest of the tags.

ﬁ KEPServerEX - Configuration [CUsersJerry Yer) Documents\EG Projects\PackMLVOPC Projects Kepware\Te_ | =— = %
File Edit View Tools Runtime Help -
JSHdBROBUF|2knax
=& PackML Tag Name Address
= B RPLC Builtin Port %3 Click to add a static tag. Tags are not required, but are browsable by O
2 Admin
L3 Command
G5 Status
& Import from C5V =
Lookjn | Kepwase - OF @O
o Name . Date madified
~ L) RPLC ADM R4 V1 New.csv 12/23/2015 308 PM
Recent Places g RPLC CMD R V1 Newcsv 12/23/2015 258 PM
. £a) RPLE STA R4 V1 New.csv 12/23/2015 308 PM
Desktop
- -
Libraries
Computer
Ll [[i} L
Netwark
Filo pama: Adrmin = Gean
oeo Files af type |C8V Filos (.cav) - [cancet
L —-
| Date Time Saurce Event
Ready Offine

Figure 28 — Selecting the File to Import

0 MITSUBISHI ELECTRIC Part 3 - Page 22 Custom Solutions Center
A7 AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — Release 4
Part 3: PackTags Design and Implementation

8 PackTags Design Template Software Files

The PackTags design template files are included in the Mitsubishi PackML Template System package. Following are the
template files:

e GX Works3 File — As a part of the overall iQ Workspace “PackML OEM Template R4”
e Kepware OPC Server File — PackML Template System R4 V1 GXW3 RPLC.opf
e OPC Tag files - RPLC ADM R4 V1 New.csv, RPLC CMD R4 V1 New.csv, RPLC STA R4 V1 New.csv

& MITSUBISHI ELECTRIC Part 3~ Page 23 Custom Solutions Center
A% AUTOMATION, INC.

Mitsubishi PackML Template Implementations — Release 4
Part 3: PackTags Design and Implementation

Appendix A

A.1 Command Tags — Spec to GX Works3 Labels

GX Works3 Labels Kepware OPC Server Tags

gvd_Cmd_UnitMode Double Word [Signed] UnitName_Command_UnitMode Long
gvb_Cmd_UnitModeChangeRequest Bit UnitName_Command_UnitModeChangeRequest Boolean
gvl_Cmd_MachSpeed FLOAT [Double Precision] UnitName_Command_MachSpeed Double
gvdu_Cmd_Materiallnterlocks Double Word [Unsigned]/Bit String [32-bit] | UnitName_Command_Materiallnterlocks Dword
gvd_Cmd_CntrlCmd Double Word [Signed] UnitName_Command_CntrlCmd Long
gvb_Cmd_CmdChangeRequest Bit UnitName_Command_CmdChangeRequest Boolean
gvsta_Cmd_Remintf[#] PackML_Cmd_RemlIntf_Type_SDT(0..9)
gvsta_Cmd_RemiIntf[#].d_Number Double Word[signed] UnitName_Command_Remotelnterface[#]_Number Long
gvsta_Cmd_RemiIntf[#].d_CmdCrtINo Double Word[signed] UnitName_Command_Remotelnterface[#]_ControlCmdNumber Long
gvsta_Cmd_Remintf[#].d_Cmd_Value Double Word[signed] UnitName_Command_Remotelnterface[#]_CmdValue Long
gvsta_Cmd_RemiIntf[#].sa_Parameter[#] PackML_Cmd_Parameter_SDT(0..9)
gvsta_Cmd_RemiIntf[#].sa_Parameter[#].d_ID Double Word [Signed] UnitName_Command_Remotelnterface[#]_Parameter[#]_ID Long
gvsta_Cmd_RemiIntf[#].sa_Parameter[#].s_Name String(34) UnitName_Command_Remotelnterface[#]_Parameter[#]_Name String
gvsta_Cmd_RemiIntf[#].sa_Parameter[#].s_Unit String(34) UnitName_Command_Remotelnterface[#]_Parameter[#]_Unit String
gvsta_Cmd_RemiIntf[#].sa_Parameter[#].|_Value FLOAT [Double Precision] UnitName_Command_Remotelnterface[#]_Parameter[#]_Value Double
gvsta_Cmd_Parameter[#] PackML_Cmd_Parameter_SDT(0..9)
gvsta_Cmd_Parameter[#].d_ID Double Word [Signed] UnitName_Command_Parameter([#]_ID Long
gvsta_Cmd_Parameter[#].s_Name String(34) UnitName_Command_Parameter[#]_Name String
gvsta_Cmd_Parameter([#].s_Unit String(34) UnitName_Command_Parameter[#]_Unit String
gvsta_Cmd_Parameter[#].|_Value FLOAT [Double Precision] UnitName_Command_Parameter[#]_Value Double
gvsta_Cmd_Pdt[#] PackML_Cmd_Pdt_Type_SDT(0..4)
gvsta_Cmd_Pdt[#].d_Product_ID Double Word [Signed] UnitName_Command_Product[#]_ProductID Long
gvsta_Cmd_Pdt[#].sa_Proccess_Var[#] PackML_Cmd_Parameter_SDT(0..9)
gvsta_Cmd_Pdt[#].sa_Proccess_Var[#].d_ID Double Word [Signed] UnitName_Command_Product[#]_ProcessVariables[#]_ID Long
gvsta_Cmd_Pdt[#].sa_Proccess_Var[#].s_Name String(34) UnitName_Command_Product[#]_ProcessVariables[#]_Name String
gvsta_Cmd_Pdt[#].sa_Proccess_Var[#].s_Unit String(34) UnitName_Command_Product[#]_ProcessVariables[#]_Unit String
¢ MITSUBISHI ELECTRIC Part 3 - Page 24 Custom Solutions Center

A% AUTOMATION, INC.

Mitsubishi PackML Template Implementations — Release 4
Part 3: PackTags Design and Implementation

GX Works3 Labels Kepware OPC Server Tags

gvsta_Cmd_Pdt[#].sa_Proccess_Var[#].|_Value FLOAT [Double Precision] UnitName_Command_Product[#]_ProcessVariables[#]_Value Double

gvsta_Cmd_Pdt[#].sa_Ing PackML_Cmd_Ing(0..9)

gvsta_Cmd_Pdt[#].sa_Ing[#].d_Ing_ID Double Word [Signed] UnitName_Command_Product[#]_Ingredients[#]_IngredientID Long

gvsta_Cmd_Pdt[#].sa_Ing[#].sa_Ing_Para[#] PackML_Cmd_Parameter_SDT(0..9)

gvsta_Cmd_Pdt[#].sa_Ing[#].sa_Ing_Para[#].d_ID Double Word [Signed] UnitName_Command_Product[#]_Ingredients[#]_Parameter[#]_ID Long

gvsta_Cmd_Pdt[#].sa_Ing[#].sa_Ing_Para[#].s_Name | String(34) UnitName_Command_Product[#]_Ingredients[#]_Parameter[#]_Name | String

gvsta_Cmd_Pdt[#].sa_Ing[#].sa_Ing_Para[#].s_Unit String(34) UnitName_Command_Product[#]_Ingredients[#]_Parameter[#]_Unit String

gvsta_Cmd_Pdt[#].sa_Ing[#].sa_Ing_Para[#].]_Value | FLOAT [Double Precision] UnitName_Command_Product[#]_Ingredients[#]_Parameter[#]_Value | Double
¢ MITSUBISHI ELECTRIC Part 3 -~ Page 25 Custom Solutions Center

A% AUTOMATION, INC.

Mitsubishi PackML Template Implementations — Release 4
Part 3: PackTags Design and Implementation

A.2 Status Tags — Spec to GX Works3 Labels

0 abe epware OPC Server Tag
gvd_Sta_UnitModeCurrent Double Word [Signed] UnitName_Status_UnitModeCurrent Long
gvb_Sta_UnitModeChangeRequested Bit UnitName_Status_UnitModeRequested Boolean
gvb_Sta_UnitModeChangelnProcess Bit UnitName_Status_UnitModeChangelnProcess Boolean
gvd_Sta_StateCurrent Double Word [Signed] UnitName_Status_StateCurrent Long
gvd_Sta_StateRequested Double Word [Signed] UnitName_Status_StateRequested Long
gvb_Sta_StateChangelnProcess Bit UnitName_Status_StateChangelnProcess Boolean
gvl_Sta_MachSpeed FLOAT [Double Precision] UnitName_Status_MachSpeed Double
gvl_Sta_CurMachSpeed FLOAT [Double Precision] UnitName_Status_CurMachSpeed Double
gvdu_Sta_Materiallnterlocks Double Word [Unsigned]/Bit String [32-bit] | UnitName_Status_Materiallnterlock Dword
gvst_Sta_Equipmentinterlock PackML_Sta_Equiplnterlock_SDT Long
gvst_Sta_Equipmentinterlock.B_Blocked Bit UnitName_Status_Equipmentinterlocks_Blocked Boolean
gvst_Sta_Equipmentinterlock.B_Starved Bit UnitName_Status_Equipmentinterlocks_Starved Boolean
gvsta_Sta_RemIntf[#] PackML_Sta_Remintf_Type_SDT(O0..9)
gvsta_Sta_Remintf[#].d_Number Double Word [Signed] UnitName_Status_Remotelnterface[#] _Number Long
gvsta_Sta_Remintf[#].d_CmdCtrINo Double Word [Signed] UnitName_Status_Remotelnterface[#]_ControlCmdNumber Long
gvsta_Sta_Remintf[#].d_Cmd_Value Double Word [Signed] UnitName_Status_Remotelnterface[#] _CmdValue Long
gvsta_Sta_Remlintf[#].sa_Parameter[#] PackML_Sta_Parameter_SDT(0..9)
gvsta_Sta_Remintf[#].sa_Parameter[#].d_ID Double Word [Signed] UnitName_Status_Remotelnterface[#]_Parameter[#]_ID Long
gvsta_Sta_RemlIntf[#].sa_Parameter[#].s_Name String(34) UnitName_Status_Remotelnterface[#]_Parameter[#]_Name String
gvsta_Sta_RemlIntf[#].sa_Parameter[#].s_Unit String(34) UnitName_Status_Remotelnterface[#]_Parameter[#]_Unit String
gvsta_Sta_RemlIntf[#].sa_Parameter[#].|_Value FLOAT [Double Precision] UnitName_Status_Remotelnterface[#]_Parameter[#]_ Value Double
gvsta_Sta_Parameter[#] PackML_Sta_Parameter_SDT(0..9)
gvsta_Sta_Parameter[#].d_ID Double Word [Signed] UnitName_Status_Parameter[#]_ID Long
gvsta_Sta_Parameter[#].s_Name String(34) UnitName_Status_Parameter[#]_Name String
gvsta_Sta_Parameter[#].s_Unit String(34) UnitName_Status_Parameter[#]_Unit String
gvsta_Sta_Parameter[#].|_Value FLOAT [Double Precision] UnitName_Status_Parameter[#]_Value Double
gvsta_Sta_Pdt[#] PackML_Sta_Pdt_Type_SDT(O0..4)
gvsta_Sta_Pdt[#].d_Product_ID Double Word [Signed] UnitName_Status_Product[#]_ProductID Long

’ MITSUBISHI ELECTRIC

A% AUTOMATION, INC.

Part 3 —Page 26

Custom Solutions Center

Mitsubishi PackML Template Implementations — Release 4
Part 3: PackTags Design and Implementation

gvsta_Sta_Pdt[#].sa_Proccess_Var[#]

PackML_Sta_Parameter_SDT(0..9)

gvsta_Sta_Pdt[#].sa_Proccess_Var[#].d_ID Double Word [Signed] UnitName_Status_Product[#]_ProcessVariables[#]_ID Long
gvsta_Sta_Pdt[#].sa_Proccess_Var[#].s_Name String(34) UnitName_Status_Product[#]_ProcessVariables[#]_Name String
gvsta_Sta_Pdt[#].sa_Proccess_Var[#].s_Unit String(34) UnitName_Status_Product[#]_ProcessVariables[#]_Unit String
gvsta_Sta_Pdt[#].sa_Proccess_Var[#].|_Value FLOAT [Double Precision] UnitName_Status_Product[#]_ProcessVariables[#] Value Double
gvsta_Sta_Pdt[#].sa_Ing PackML_Sta_Ing(0..9)

gvsta_Sta_Pdt[#].sa_Ing[#].d_Ing_ID Double Word [Signed] UnitName_Status_Product[#]_Ingredients[#]_Ingredient|D Long
gvsta_Sta_Pdt[#].sa_Ing[#].sa_Ing_Para[#] PackML_Sta_Parameter_SDT(0..9)

gvsta_Sta_Pdt[#].sa_Ing[#].sa_Ing_Para[#].d_ID Double Word [Signed] UnitName_Status_Product[#]_Ingredients[#]_Parameter[#]_ID Long
gvsta_Sta_Pdt[#].sa_Ing[#].sa_Ing_Para[#].s_Name | String(34) UnitName_Status_Product[#]_Ingredients[#]_Parameter[#] _Name | String
gvsta_Sta_Pdt[#].sa_Ing[#].sa_Ing_Para[#].s_Unit String(34) UnitName_Status_Product[#]_Ingredients[#]_Parameter[#]_Unit String
gvsta_Sta_Pdt[#].sa_Ing[#].sa_Ing_Para[#].|_Value | FLOAT [Double Precision] UnitName_Status_Product[#]_Ingredients[#]_Parameter[#]_Value | Double

@ MITSUBISHI ELECTRIC
&% AUTOMATION, INC.

Part 3 — Page 27

Custom Solutions Center

Mitsubishi PackML Template Implementations — Release 4
Part 3: PackTags Design and Implementation

A.3 Admin Tags — Spec to GX Works3 Labels
GX Works3 Labels

Kepware OPC Server Tags

gvst_Adm_Parameter[#]

PackML_Admin_Parameter_SDT(0..19)

gvst_ Adm_Parameter[#].d_ID Double Word [Signed] UnitName_Admin_Parameter[#]_ID Long
gvst_Adm_Parameter[#].s_Name String(34) UnitName_Admin_Parameter[#]_Name String
gvst_Adm_Parameter[#].s_Unit String(34) UnitName_Admin_Parameter[#]_Unit String
gvst_Adm_Parameter[#].|_Value FLOAT [Double Precision] UnitName_Admin_Parameter[#]_Value Double
gvsta_Adm_Alarm[#]. PackML_Admin_Alarm_SDT(0..63)

gvsta_Adm_Alarm[#].b_Trigger Bit UnitName_Admin_Alarm[#]_Trigger Boolean
gvsta_Adm_Alarm[#].d_ID Double Word [Signed] UnitName_Admin_Alarm[#]_ID Long
gvsta_Adm_Alarm[#].d_Value Double Word [Signed] UnitName_Admin_Alarm[#]_Value Long
gvsta_Adm_Alarm[#].s_Message String(34) UnitName_Admin_Alarm[#]_Message String
gvsta_Adm_Alarm[#].d_Category Double Word [Signed] UnitName_Admin_Alarm[#]_Category
gvsta_Adm_Alarm[#].wua_DateTime Double Word [Unsigned]/Bit String [32-bit](0..6)

gvsta_Adm_Alarm[#].wua_DateTime[0] Double Word [Unsigned]/Bit String [32-bit] UnitName_Admin_Alarm[#]_DateTime[0] Long
gvsta_Adm_Alarm[#].wua_DateTime[1] Double Word [Unsigned]/Bit String [32-bit] UnitName_Admin_Alarm[#]_DateTime[1] Long
gvsta_Adm_Alarm[#].wua_DateTime[2] Double Word [Unsigned]/Bit String [32-bit] UnitName_Admin_Alarm[#]_DateTime[2] Long
gvsta_Adm_Alarm[#].wua_DateTime[3] Double Word [Unsigned]/Bit String [32-bit] UnitName_Admin_Alarm[#]_DateTime[3] Long
gvsta_Adm_Alarm[#].wua_DateTime[4] Double Word [Unsigned]/Bit String [32-bit] UnitName_Admin_Alarm[#]_DateTime[4] Long
gvsta_Adm_Alarm[#].wua_DateTime[5] Double Word [Unsigned]/Bit String [32-bit] UnitName_Admin_Alarm[#]_DateTime[5] Long
gvsta_Adm_Alarm[#].wua_DateTime[6] Double Word [Unsigned]/Bit String [32-bit] UnitName_Admin_Alarm[#]_DateTime[6] Long
gvsta_Adm_Alarm[#].wua_AckDateTime Double Word [Unsigned]/Bit String [32-bit](0..6)

gvsta_Adm_Alarm[#].wua_AckDateTime[0] Double Word [Unsigned]/Bit String [32-bit] UnitName_Admin_Alarm[#]_AckDateTime[0] Long
gvsta_Adm_Alarm[#].wua_AckDateTime[1] Double Word [Unsigned]/Bit String [32-bit] UnitName_Admin_Alarm[#]_AckDateTime[1] Long
gvsta_Adm_Alarm[#].wua_AckDateTime[2] Double Word [Unsigned]/Bit String [32-bit] UnitName_Admin_Alarm[#]_AckDateTime[2] Long
gvsta_Adm_Alarm[#].wua_AckDateTime[3] Double Word [Unsigned]/Bit String [32-bit] UnitName_Admin_Alarm[#]_AckDateTime[3] Long
gvsta_Adm_Alarm[#].wua_AckDateTime[4] Double Word [Unsigned]/Bit String [32-bit] UnitName_Admin_Alarm[#]_AckDateTime[4] Long
gvsta_Adm_Alarm[#].wua_AckDateTime[5] Double Word [Unsigned]/Bit String [32-bit] UnitName_Admin_Alarm[#]_AckDateTime[5] Long
gvsta_Adm_Alarm[#].wua_AckDateTime[6] Double Word [Unsigned]/Bit String [32-bit] UnitName_Admin_Alarm[#]_AckDateTime[6] Long
gvd_Adm_AlarmExtent Double Word [Signed] UnitName_Admin_AlarmExtent Long

¢ MITSUBISHI ELECTRIC
&% AUTOMATION, INC.

Part 3 —Page 28

Custom Solutions Center

Mitsubishi PackML Template Implementations — Release 4
Part 3: PackTags Design and Implementation

GX Works3 Labels

gvst_Adm_AlarmHistory[#]

PackML_Admin_Alarm_SDT(0..255)

Kepware OPC Server Tags

gvsta_Adm_AlarmHistory[#].b_Trigger Bit UnitName_Admin_AlarmHistory[#]_Trigger Boolean
gvsta_Adm_AlarmHistory[#].d_ID Double Word [Signed] UnitName_Admin_AlarmHistory[#]_ID Long
gvsta_Adm_AlarmHistory[#].d_Value Double Word [Signed] UnitName_Admin_AlarmHistory[#]_Value Long
gvsta_Adm_AlarmHistory[#].s_Message String(34) UnitName_Admin_AlarmHistory[#]_Message String
gvsta_Adm_AlarmHistory[#].d_Category Double Word [Signed] UnitName_Admin_AlarmHistory[#]_Category
gvsta_Adm_AlarmHistory[#].wua_DateTime Double Word [Unsigned]/Bit String [32-bit](0..6)

gvsta_Adm_AlarmHistory[#].wua_DateTime[0] Double Word [Unsigned]/Bit String [32-bit] UnitName_Admin_AlarmHistory[#]_DateTime[0] Long
gvsta_Adm_AlarmHistory[#].wua_DateTime[1] Double Word [Unsigned]/Bit String [32-bit] UnitName_Admin_AlarmHistory[#]_DateTime[1] Long
gvsta_Adm_AlarmHistory[#].wua_DateTime[2] Double Word [Unsigned]/Bit String [32-bit] UnitName_Admin_AlarmHistory[#]_DateTime[2] Long
gvsta_Adm_AlarmHistory[#].wua_DateTime[3] Double Word [Unsigned]/Bit String [32-bit] UnitName_Admin_AlarmHistory[#]_DateTime[3] Long
gvsta_Adm_AlarmHistory[#].wua_DateTime[4] Double Word [Unsigned]/Bit String [32-bit] UnitName_Admin_AlarmHistory[#]_DateTime[4] Long
gvsta_Adm_AlarmHistory[#].wua_DateTime[5] Double Word [Unsigned]/Bit String [32-bit] UnitName_Admin_AlarmHistory[#]_DateTime[5] Long
gvsta_Adm_AlarmHistory[#].wua_DateTime[6] Double Word [Unsigned]/Bit String [32-bit] UnitName_Admin_AlarmHistory[#]_DateTime[6] Long
gvsta_Adm_AlarmHistory[#].wua_AckDateTime Double Word [Unsigned]/Bit String [32-bit](0..6)

gvsta_Adm_AlarmHistory[#].wua_AckDateTime[0] Double Word [Unsigned]/Bit String [32-bit] UnitName_Admin_AlarmHistory[#]_AckDateTime[0] Long
gvsta_Adm_AlarmHistory[#].wua_AckDateTime[1] Double Word [Unsigned]/Bit String [32-bit] UnitName_Admin_AlarmHistory[#]_AckDateTime[1] Long
gvsta_Adm_AlarmHistory[#].wua_AckDateTime[2] Double Word [Unsigned]/Bit String [32-bit] UnitName_Admin_AlarmHistory[#]_AckDateTime[2] Long
gvsta_Adm_AlarmHistory[#].wua_AckDateTime[3] Double Word [Unsigned]/Bit String [32-bit] UnitName_Admin_AlarmHistory[#] AckDateTime[3] Long
gvsta_Adm_AlarmHistory[#].wua_AckDateTime[4] Double Word [Unsigned]/Bit String [32-bit] UnitName_Admin_AlarmHistory[#] AckDateTime[4] Long
gvsta_Adm_AlarmHistory[#].wua_AckDateTime[5] Double Word [Unsigned]/Bit String [32-bit] UnitName_Admin_AlarmHistory[#] AckDateTime[5] Long
gvsta_Adm_AlarmHistory[#].wua_AckDateTime[6] Double Word [Unsigned]/Bit String [32-bit] UnitName_Admin_AlarmHistory[#] AckDateTime[6] Long
gvd_Adm_AlarmHistoryExtent Double Word [Signed] UnitName_Admin_AlarmHistoryExtent Long
gvst_Adm_StopReason PackML_Admin_Alarm_SDT

gvsta_Adm_StopReason.b_Trigger Bit UnitName_Admin_StopReason_Trigger Boolean
gvsta_Adm_StopReason.d_ID Double Word [Signed] UnitName_Admin_StopReason_ID Long
gvsta_Adm_StopReason.d_Value Double Word [Signed] UnitName_Admin_StopReason_Value Long
gvsta_Adm_StopReason.s_Message String(34) UnitName_Admin_StopReason_Message String

gvsta_Adm_StopReason.d_Category

Double Word [Signed]

UnitName_Admin_StopReason_Category

‘ MITSUBISHI ELECTRIC
A% AUTOMATION, INC.

Part 3 —Page 29

Custom Solutions Center

Mitsubishi PackML Template Implementations — Release 4

Part 3: PackTags Design and Implementation

GX Works3 Labels

gvsta_Adm_StopReason.wua_DateTime

Double Word [Unsigned]/Bit String [32-bit](0..6)

Kepware OPC Server Tags

gvsta_Adm_StopReason.wua_DateTime[0] Double Word [Unsigned]/Bit String [32-bit] UnitName_Admin_StopReason_DateTime[0] Long
gvsta_Adm_StopReason.wua_DateTime[1] Double Word [Unsigned]/Bit String [32-bit] UnitName_Admin_StopReason_DateTime[1] Long
gvsta_Adm_StopReason.wua_DateTime[2] Double Word [Unsigned]/Bit String [32-bit] UnitName_Admin_StopReason_DateTime[2] Long
gvsta_Adm_StopReason.wua_DateTime[3] Double Word [Unsigned]/Bit String [32-bit] UnitName_Admin_StopReason_DateTime[3] Long
gvsta_Adm_StopReason.wua_DateTime[4] Double Word [Unsigned]/Bit String [32-bit] UnitName_Admin_StopReason_DateTime[4] Long
gvsta_Adm_StopReason.wua_DateTime[5] Double Word [Unsigned]/Bit String [32-bit] UnitName_Admin_StopReason_DateTime[5] Long
gvsta_Adm_StopReason.wua_DateTime[6] Double Word [Unsigned]/Bit String [32-bit] UnitName_Admin_StopReason_DateTime[6] Long
gvsta_Adm_StopReason.wua_AckDateTime Double Word [Unsigned]/Bit String [32-bit](0..6)

gvsta_Adm_StopReason.wua_AckDateTime[0] Double Word [Unsigned]/Bit String [32-bit] UnitName_Admin_StopReason_AckDateTime[0] Long
gvsta_Adm_StopReason.wua_AckDateTime[1] Double Word [Unsigned]/Bit String [32-bit] UnitName_Admin_StopReason_AckDateTime[1] Long
gvsta_Adm_StopReason.wua_AckDateTime[2] Double Word [Unsigned]/Bit String [32-bit] UnitName_Admin_StopReason_AckDateTime[2] Long
gvsta_Adm_StopReason.wua_AckDateTime[3] Double Word [Unsigned]/Bit String [32-bit] UnitName_Admin_StopReason_AckDateTime[3] Long
gvsta_Adm_StopReason.wua_AckDateTime[4] Double Word [Unsigned]/Bit String [32-bit] UnitName_Admin_StopReason_AckDateTime[4] Long
gvsta_Adm_StopReason.wua_AckDateTime[5] Double Word [Unsigned]/Bit String [32-bit] UnitName_Admin_StopReason_AckDateTime[5] Long
gvsta_Adm_StopReason.wua_AckDateTime[6] Double Word [Unsigned]/Bit String [32-bit] UnitName_Admin_StopReason_AckDateTime[6] Long
gvd_Adm_StopReasonExtent Double Word [Signed] UnitName_Admin_StopReasonExtent Long
gvst_Adm_AlarmWarning[#] PackML_Admin_Alarm_SDT(0..63)

gvsta_Adm_AlarmWarning[#].b_Trigger Bit UnitName_Admin_AlarmWarning[#]_Trigger Boolean
gvsta_Adm_AlarmWarning[#].d_ID Double Word [Signed] UnitName_Admin_AlarmWarning[#]_ID Long
gvsta_Adm_AlarmWarning[#].d_Value Double Word [Signed] UnitName_Admin_AlarmWarning[#]_Value Long
gvsta_Adm_AlarmWarning[#].s_Message String(34) UnitName_Admin_AlarmWarning[#]_Message String
gvsta_Adm_AlarmWarning[#].d_Category Double Word [Signed] UnitName_Admin_AlarmWarning[#]_Category
gvsta_Adm_AlarmWarning[#].wua_DateTime Double Word [Unsigned]/Bit String [32-bit](0..6)

gvsta_Adm_AlarmWarning[#].wua_DateTime[0] Double Word [Unsigned]/Bit String [32-bit] UnitName_Admin_AlarmWarning[#]_DateTime[0] Long
gvsta_Adm_AlarmWarning[#].wua_DateTime[1] Double Word [Unsigned]/Bit String [32-bit] UnitName_Admin_AlarmWarning([#]_DateTime[1] Long
gvsta_Adm_AlarmWarning[#].wua_DateTime[2] Double Word [Unsigned]/Bit String [32-bit] UnitName_Admin_AlarmWarning[#]_DateTime[2] Long
gvsta_Adm_AlarmWarning[#].wua_DateTime[3] Double Word [Unsigned]/Bit String [32-bit] UnitName_Admin_AlarmWarning[#]_DateTime[3] Long
gvsta_Adm_AlarmWarning[#].wua_DateTime[4] Double Word [Unsigned]/Bit String [32-bit] UnitName_Admin_AlarmWarning[#]_DateTime[4] Long

‘ MITSUBISHI ELECTRIC
A% AUTOMATION, INC.

Part 3 —Page 30

Custom Solutions Center

Mitsubishi PackML Template Implementations — Release 4
Part 3: PackTags Design and Implementation

GX Works3 Labels

Kepware OPC Server Tags

gvsta_Adm_AlarmWarning[#].wua_DateTime[5] Double Word [Unsigned]/Bit String [32-bit] UnitName_Admin_AlarmWarning[#]_DateTime[5] Long
gvsta_Adm_AlarmWarning[#].wua_DateTime[6] Double Word [Unsigned]/Bit String [32-bit] UnitName_Admin_AlarmWarning[#]_DateTime[6] Long
gvsta_Adm_AlarmWarning[#].wua_AckDateTime Double Word [Unsigned]/Bit String [32-bit](0..6)

gvsta_Adm_AlarmWarning[#].wua_AckDateTime[0] | Double Word [Unsigned]/Bit String [32-bit] UnitName_Admin_AlarmWarning[#]_AckDateTime[0] Long
gvsta_Adm_AlarmWarning[#].wua_AckDateTime[1] | Double Word [Unsigned]/Bit String [32-bit] UnitName_Admin_AlarmWarning[#]_AckDateTime[1] Long
gvsta_Adm_AlarmWarning[#].wua_AckDateTime[2] | Double Word [Unsigned]/Bit String [32-bit] UnitName_Admin_AlarmWarning[#]_AckDateTime[2] Long
gvsta_Adm_AlarmWarning[#].wua_AckDateTime[3] | Double Word [Unsigned]/Bit String [32-bit] UnitName_Admin_AlarmWarning[#]_AckDateTime[3] Long
gvsta_Adm_AlarmWarning[#].wua_AckDateTime[4] | Double Word [Unsigned]/Bit String [32-bit] UnitName_Admin_AlarmWarning[#]_AckDateTime[4] Long
gvsta_Adm_AlarmWarning[#].wua_AckDateTime[5] | Double Word [Unsigned]/Bit String [32-bit] UnitName_Admin_AlarmWarning[#]_AckDateTime[5] Long
gvsta_Adm_AlarmWarning[#].wua_AckDateTime[6] | Double Word [Unsigned]/Bit String [32-bit] UnitName_Admin_AlarmWarning[#]_AckDateTime[6] Long
gvd_Adm_AlarmWarningExtent Double Word [Signed] UnitName_Admin_AlarmWarningExtent Long
gvda_Adm_ModeCurrentTime Double Word [Signed](0..31) UnitName_Admin_ModeCurrentTime[#] Long
gvda_Adm_ModeCumulativeTime Double Word [Signed](0..31) UnitName_Admin_ModeCumulativeTime[#] Long
gvda_Adm_StateCurrentTime Double Word [Signed](0..31,0..17) UnitName_Admin_StateCurrentTime[#] Long
gvda_Adm_StateCumulativeTime Double Word [Signed](0..31,0..17) UnitName_Admin_StateCumulativeTime[#] Long
gvsta_Adm_ProdConsumedCnt[#] PackML_Admin_Count_SDT(0..9)

gvsta_Adm_ProdConsumedCnt[#].d_ID Double Word [Signed] UnitName_Admin_ProdConsumedCount[#]_ID Long
gvsta_Adm_ProdConsumedCnt[#].s_Name String(34) UnitName_Admin_ProdConsumedCount[#]_Name String
gvsta_Adm_ProdConsumedCnt[#].s_Unit String(34) UnitName_Admin_ProdConsumedCount[#]_Unit String
gvsta_Adm_ProdConsumedCnt[#].d_Count Double Word [Signed] UnitName_Admin_ProdConsumedCount[#]_Count Long
gvsta_Adm_ProdConsumedCnt[#].d_AccCount Double Word [Signed] UnitName_Admin_ProdConsumedCount[#]_AccCount Long
gvsta_Adm_ProdProcessedCnt[#] PackML_Admin_Count_SDT(0..9)

gvsta_Adm_ProdProcessedCnt[#].d_ID Double Word [Signed] UnitName_Admin_ProdProcessedCount[#]_ID Long
gvsta_Adm_ProdProcessedCnt[#].s_Name String(34) UnitName_Admin_ProdProcessedCount[#] _Name String
gvsta_Adm_ProdProcessedCnt[#].s_Unit String(34) UnitName_Admin_ProdProcessedCount[#]_Unit String
gvsta_Adm_ProdProcessedCnt[#].d_Count Double Word [Signed] UnitName_Admin_ProdProcessedCount[#]_Count Long
gvsta_Adm_ProdProcessedCnt[#].d_AccCount Double Word [Signed] UnitName_Admin_ProdProcessedCount[#]_AccCount Long
gvsta_Adm_ProdDefectiveCnt[#] PackML_Admin_Count_SDT(0..9)

gvsta_Adm_ProdDefectiveCnt[#].d_ID Double Word [Signed] UnitName_Admin_ProdDefectiveCount[#]_ID Long

‘ MITSUBISHI ELECTRIC
A% AUTOMATION, INC.

Part 3 —Page 31

Custom Solutions Center

Mitsubishi PackML Template Implementations — Release 4
Part 3: PackTags Design and Implementation

GX Works3 Labels

Kepware OPC Server Tags ‘

gvsta_Adm_ProdDefectiveCnt[#].s_Name String(34) UnitName_Admin_ProdDefectiveCount[#]_Name String
gvsta_Adm_ProdDefectiveCnt[#].s_Unit String(34) UnitName_Admin_ProdDefectiveCount[#]_Unit String
gvsta_Adm_ProdDefectiveCnt[#].d_Count Double Word [Signed] UnitName_Admin_ProdDefectiveCount[#]_Count Long
gvsta_Adm_ProdDefectiveCnt[#].d_AccCount Double Word [Signed] UnitName_Admin_ProdDefectiveCount[#]_AccCount Long
gvd_Adm_AccTimeSinceReset Double Word [Signed] UnitName_Admin_AccTimeSinceReset Long
gvl_Adm_MachDesignSpeed FLOAT [Double Precision] UnitName_Admin_MachDesignSpeed Double
gvd_Adm_StatesDisabled Double Word [Signed] UnitName_Admin_StatesDisabled Long
gvwa_Adm_PACDateTime_Date Double Word [Unsigned]/Bit String [32-bit](0..6)

gvwa_Adm_PACDateTime_Date[0] Double Word [Signed] UnitName_Admin_PLCDateTime[0] Long
gvwa_Adm_PACDateTime_Date[1] Double Word [Signed] UnitName_Admin_PLCDateTime[1] Long
gvwa_Adm_PACDateTime_Date[2] Double Word [Signed] UnitName_Admin_PLCDateTime|[2] Long
gvwa_Adm_PACDateTime_Date[3] Double Word [Signed] UnitName_Admin_PLCDateTime[3] Long
gvwa_Adm_PACDateTime_Date[4] Double Word [Signed] UnitName_Admin_PLCDateTime[4] Long
gvwa_Adm_PACDateTime_Date[5] Double Word [Signed] UnitName_Admin_PLCDateTimel[5] Long
gvwa_Adm_PACDateTime_Date[6] Double Word [Signed] UnitName_Admin_PLCDateTime[6] Long

@ MITSUBISHI ELECTRIC
&% AUTOMATION, INC.

Part 3 —Page 32

Custom Solutions Center

. MITSUBISHI ELECTRIC
AW AUTOMATION, INC.

Engineering Group

Users Guide

OEM PackML Implementation Templates

Release 4, Version 1.0

Content

A) (o e [V 4o 3 TSP PRSP

2 Overview of PackML State and Mode Core FUNCEION BIOCKSc.couirieriiiieieieree et

3 Function Block: PAaCkML_MOOEStateMaN@EEN........uuieieeiiieeciieeeeciiee e ettt e eettee e s taeeeestaeesssaaeeesstaeeeassaeesssseaeeassseesssseeesnsseenan
3.1 DS T P ION e
3.2 FUNCLION BIOCK OPEIAtIONSeiiiiiieeieiieie ettt e ettt e e e e e ettt te e e e e e e e tbtbeeeeeeeeaaasbeseaaeseasnssbassaaaseannsseaeaaeseannnsen
33 FUuNCction BIOCK LOCAl Variablesco ittt sttt be e s e bt s be e e b e earee

4 Function Block: PACKML_MOAEStatETiMES.cccuuieeiiiieeeeiteeeeie e e etee e e sttt e e e stae e e stteeeesasaeeesasaeeessseeeaassssesassaeeesnsseeesnsseessnnsens
4.1 (D<ol o1 o] o IUR OO T P P PP P PP PP PP PPPPPPPPPPPPPN
4.2 Timer_32Bit_SEC FUNCLION BIOCKuiiiiiiie ettt e e et e e e st e e e et e e e seteeeesntaeesensaeeesnseeeeanneseesnnnens
4.3 (VT gToruToT T 21 ool Q@] o 1T | 4 o] o -3 SSRS
4.4 FUuNction BIOCK LOCAl Variablesoo it sttt sttt s b e bt e s be e e neesaree

5 Example Use of the PackIML FUNCLION BIOCKSeuiiiiiiiee ettt e e e ettt e e e e e e e aarb e e e e e e s e nnraeeeas
5.1 INIEIAlIZATION EXQMPIE ceeiiieiieeee ettt e et e e e e e e ettt e e e e e e e e tbtbeeeeaeseaassaeaeaaeseaasssbaseaeaseasnsseaeaaaseannnses
5.2 Example of Calling FUNCLION BIOCKSuuiiiiiiieee ettt e e et e e e e e s e et be e e e e e e e e nabbeaeeaeeeennnens
¢ MITSUBISHI ELECTRIC Part 4~ i Engineering Group

A% AUTOMATION, INC.

Revision History

Version

Revision Date

Description

R4 V1.0

January 29, 2016

Initial release of PackML OEM Implementation Templates Release 4

‘ MITSUBISHI ELECTRIC
A% AUTOMATION, INC.

Part 4~ Engineering Group

Mitsubishi PackML Implementation Templates — Release 4
Part 4: PackML Core Function Blocks

1 Introduction

The purpose of this document is to describe the design considerations and implementation approaches of implementing
PackML specification in an iQ PLC.

PackML specification is a part of the overall OMAC PackML standard and consists of PackTags and PacKML State Engine
definitions. PackTags defines a set of named data elements used for open architecture, interoperable data exchange in
automated machinery. PackTags are useful for machine-to-machine (inter-machine) communications; for example between
a Filler and a Capper. PackTags can also be used for data exchange between machines and higher-level information systems
like Manufacturing Operations Management and Enterprise Information Systems. PackML State Engine defines common
procedural programming structures, consistent mode and state definitions that drive a common look and feel between
equipment.

The Mitsubishi design of PackTags is documented in Part 3 of this Users Guide. This document describes the
implementation of Mitsubishi PackML core function blocks that handle the PackML Machine State Transitions, Mode
Manager, and State and Mode Timers, and also the execution of machine breakdown structures.

The function blocks are implemented using Mitsubishi GX Works3 Functional Block Diagram Programming language and
label programming methods.

2 Overview of PackML State and Mode Core Function Blocks

There are two Mitsubishi PackML State and Mode core function blocks:
e PackML_ModeStateManager
e PackML_ModeStateTimes

The two key functions of the PackML_ModeStateManger are: (1) transitioning the machine from current state to the proper
next state based on external commands and state completion status, and (2) handling the transitions of machine modes.
The PackML_ModeStateTimes (1) accumulates the current and accumulated time of the machine in each mode and state,
and (2) provides the timer values and stores them in appropriate PackTags.

These function blocks, together with their associated global and local labels, are packaged in the overall Mitsubishi PackML
OEM Implementation template project.

3 Function Block: PackML_ModeStateManager

3.1 Description

The PackML_ModeStateManager handles the state and mode transitions of a unit machine according to the State and
Mode Models defined in the OMAC PackML specification.

To use this Function Block properly in an OEM program, one should ensure the following requirements are satisfied:

1. When an OEM programs a machine to use the PackML Function Blocks, it should initialize the machine to start
up with the machine mode set to 3, the Manual Mode condition, and the state to be at the “Stopped” stage
during the first scan of the PLC.

2. When an OEM designs the machine, he should determine how many modes the machine will have and how
many and what states each mode should have. The selection of modes and states should follow the OMAC
PackML Standard when appropriate. Each mode, when defined, should have at least three states: Stopped,
Execute, Aborted.

3. Since not all states are configured for all modes, the OEM is responsible for setting up which states are not
configured for each mode. He is also responsible for setting up at which states the machine is allowed to
change mode. Refer to Part 6 Section 5.1.1 3.3 of the Users Guide for more details.

Q MITSUBISHI ELECTRIC Part4 - Page 1 Custom Solutions Center
A% AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — Release 4
Part 4: PackML Core Function Blocks

4. The OEM is also responsible for configuring the names of all modes and states. Refer to Part 6 Section 5.1.1 of
the Users Guide for more details.

5. When this FB is used in an OEM program, it is preferable that the FB is always enabled.

6. The label “PackML” is a structured data type and its members should be properly defined before the FB is
called.

3.2 Function Block Operations

The main functions of the FB consist of (1) managing state transitions, (2) managing mode transitions, and (3) updating
current mode and state information.

When the FB is first call, it determines the current state of the machine and whether there is a valid command to
transition the machine to a new state. If a valid command is set, the machine will be transitioned to the valid new state
and the corresponding output bit will be set to reflect the new current state.

The FB will then examine any mode change command is set. It will verify the machine is in the proper mode and state
that a change of mode is allowed. If the mode change command is not valid, the ModeChangeNotAllowed output will
be set high for 3 seconds and then reset. The mode and state of the unit machine will remain in the current mode and
state respectively.

The FB finally updates the current mode and state information and exit to the FB calling programs.

The PackML_ModeStateManager Function Block is shown in the figure below:

- EN ENO \

— ib_CmdReset ob_FB_Clearing —
— ib_CmdSan ob_FB_Stopped —
= ib_CmdStop ob_FB_Starting —
— ib_CmdHold ob_FB_ldle —
— ib_CmdUnhold cb_FB_Suspended =
— ib_CmdSuspend ob_FB_Execute —
= ib_CmdUnsuspend ob_FB_Stopping =
= ib_CmdAborn ob_FB_Aborting ‘——
— ib_CmdClear ob_FB_Aboned =
= ib_CmdStateComplete ob_FB_Holding ;
= ib_CfgRemoteCmdEnable ob_FB_Held ;

= ib_InpRemcteModeCmdChangeRequest ob_FB_UnHolding =
— ib_InpRemoteStmteCmd ob_FB_Suspending IS
= ibinpRemoeSiteCmdChangeRequest ob_FB_UnSuspending -—
ob_FB_Resetting —
ob_FB_Completing —
ob_FB_Complete ‘—
ob_FB_ModeChangeNotAllowed —
=1 id_CmdMode ‘
- id_InpRemoteModeCmd
- dw_Sts_ModeCurrent
- dw_Sts_StateCurrent
=1 dw_GOTScreen_SW

- dba_Sts_ModeBits

Figure 1 PackML_ModeStateManager Function Block with Inputs and Outputs

3.3 Function Block Local Variables
The local variables that are used by the FB are described in this section. There are three types of local variables:

‘ MITSUBISHI ELECTRIC Part 4 - Page 2 Custom Solutions Center
A% AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — Release 4
Part 4: PackML Core Function Blocks

e Input Variables — The values of these variables need to be properly set / defined by connecting proper logic or
variable inputs to the FB before execution.

e Output Variables — The values of these variables will be properly set or defined after the execution of the FB is
completed. If a user of the FB can chose not to use the results of the output variables.

e Variables — Those labels used internally in the FB that will not be exposed externally.

Variable Type | Variable Label Data Description
Type
VAR_OUTPUT ob_FB_Clearing Bit When the bit is set, the Machine is in the “Clearing” State
VAR_OUTPUT ob_FB_Stopped Bit When the bit is set, the Machine is in the “Stopped” State
VAR_OUTPUT ob_FB_Starting Bit When the bit is set, the Machine is in the “Starting” State
VAR_OUTPUT ob_FB_ldle Bit When the bit is set, the Machine is in the “Idle” State
VAR_OUTPUT ob_FB_Suspended Bit When the bit is set, the Machine is in the “Suspended” State
VAR_OUTPUT ob_FB_Execute Bit When the bit is set, the Machine is in the “Execute” State
VAR_OUTPUT ob_FB_Stopping Bit When the bit is set, the Machine is in the “Stopping” State
VAR_OUTPUT ob_FB_Aborting Bit When the bit is set, the Machine is in the “Aborting” State
VAR_OUTPUT ob_FB_Aborted Bit When the bit is set, the Machine is in the “Aborted” State
VAR_OUTPUT ob_FB_Holding Bit When the bit is set, the Machine is in the “Holding” State
VAR_OUTPUT ob_FB_Held Bit When the bit is set, the Machine is in the “Held” State
VAR_OUTPUT ob_FB_UnHolding Bit When the bit is set, the Machine is in the “Unholding” State
VAR_OUTPUT ob_FB_Suspending Bit When the bit is set, the Machine is in the “Suspending” State
VAR_OUTPUT ob_FB_UnSuspending Bit When the bit is set, the Machine is in the “UnSuspending” State
VAR_OUTPUT ob_FB_Resetting Bit When the bit is set, the Machine is in the “Resetting” State
VAR_OUTPUT ob_FB_Completing Bit When the bit is set, the Machine is in the “Completing” State
VAR_OUTPUT ob_FB_Complete Bit When the bit is set, the Machine is in the “Complete” State
When the bit is set, the requested new mode is not valid and the
VAR OUTPUT b FB ModeCh NotAll d Bi “Mode Change” command is not allowed. The machine will remain in
- ob_FB_ModeChangeNotAllowe it the current mode and current state.
This bit will remain on for 3 seconds and then reset itself.
Setting this bit, the user program indicating the “Reset” command has
been received and the machine should transition to the proper next
VAR_INPUT ib_CmdReset Bit state. If the current machine state does not support the “Reset”
transition, the machine will remain in the current state and the “Reset”
command will be ignored.
Setting this bit, the user program indicating the “Start” command has
been received and the machine should transition to the proper next
VAR_INPUT ib_CmdStart Bit state. If the current machine state does not support the “Start”
transition, the machine will remain in the current state and the “Start”
command will be ignored.
Setting this bit, the user program indicating the “Stop” command has
been received and the machine should transition to the proper next
VAR_INPUT ib_CmdStop Bit state. If the current machine state does not support the “Stop”
transition, the machine will remain in the current state and the “Stop”
command will be ignored.
Setting this bit, the user program indicating the “Hold” command has
been received and the machine should transition to the proper next
VAR_INPUT ib_CmdHold Bit state. If the current machine state does not support the “Hold”
transition, the machine will remain in the current state and the “Hold”
command will be ignored.
§ MITSUBISHI ELECTRIC Part 4~ Page 3 Custom Solutions Center

A% AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — Release 4
Part 4: PackML Core Function Blocks

Variable Type

Variable Label

Data
Type

Description

VAR_INPUT

ib_CmdUnhold

Bit

Setting this bit, the user program indicating the “UnHold” command
has been received and the machine should transition to the proper
next state. If the current machine state does not support the “UnHold”
transition, the machine will remain in the current state and the
“UnHold” command will be ignored.

VAR_INPUT

ib_CmdSuspend

Bit

Setting this bit, the user program indicating the “Suspend” command
has been received and the machine should transition to the proper
next state. If the current machine state does not support the
“Suspend” transition, the machine will remain in the current state and
the “Suspend” command will be ignored.

VAR_INPUT

ib_CmdUnsuspend

Bit

Setting this bit, the user program indicating the “UnSuspend”
command has been received and the machine should transition to the
proper next state. If the current machine state does not support the
“UnSuspend” transition, the machine will remain in the current state
and the “UnSuspend” command will be ignored.

VAR_INPUT

ib_CmdAbort

Bit

Setting this bit, the user program indicating the “Abort” command has
been received and the machine should transition to the proper next
state. If the current machine state does not support the “Abort”
transition, the machine will remain in the current state and the “Abort”
command will be ignored.

VAR_INPUT

ib_CmdClear

Bit

Setting this bit, the user program indicating the “Clear” command has
been received and the machine should transition to the proper next
state. If the current machine state does not support the “Clear”
transition, the machine will remain in the current state and the “Clear”
command will be ignored.

VAR_INPUT

ib_CmdStateComplete

Bit

Setting this bit, the user program indicating the “State Complete”
condition has been received and the machine should transition to the
proper next state. If the current machine state does not support the
“State Complete” transition, the machine will remain in the current
state and the “State Complete” command will be ignored.

VAR_INPUT

ib_CfgRemoteCmdEnable

Bit

When this bit is set, the machine is allowing state and mode transition
commands to be issued remotely in addition to the Command Bits to
the FB.

VAR_INPUT

ib_InpRemoteModeCmdChangeReq
uest

Bit

When this bit is set and the machine is allowing mode transition
commands to be issued remotely, the mode change command will
then be evaluated and accepted if it is valid.

VAR_INPUT

id_InpRemoteStateCmd

Double
Word

This input contains the Remote State Command value and is the value
of the new state the machine should transition to. If the input value
does not change, no state change will occur and the machine will
remain in the current state.

The valid State Command values are defined as follows and others are
ignored:

: Reset

: Start

Stop

Hold
UnHold

: Suspend

: UnSuspend
: Abort

: Clear

© O N O U A WN R

VAR_INPUT

ib_InpRemoteStateCmdChangeRequ
est

Bit

When this bit is set and the machine is allowing state transition
commands to be issued remotely, the state change command will then
be evaluated and accepted if it is valid.

‘ MITSUBISHI ELECTRIC
A% AUTOMATION, INC.

Part 4 —Page 4

Custom Solutions Center

Mitsubishi PackML Implementation Templates — Release 4
Part 4: PackML Core Function Blocks

Variable Type | Variable Label Data Description
Type
The value of the new mode the machine will transition to. If the
CmdMode input value does not change, no mode change will occur
. Double and the machine will remain in the current mode.
VAR_IN_OUT id_CmdMode . .
Word The valid values of CmdMode are 0 — 31. The FB allows up to 31 valid
modes and “0” being “NoMode”. However, the user programs should
have proper logic in place to handle all valid machine modes.
This input contains the Remote Mode Command value and is the value
of the new mode the machine should transition to. If the input value
Doubl does not change, no mode change will occur and the machine will
VAR_IN_OUT id_InpRemoteModeCmd V\f’; de remain in the current mode.
The valid values are 0 — 31. The FB allows up to 31 valid modes and “0”
being “NoMode”. However, the user programs should have proper
logic in place to handle all valid machine modes.
VAR_IN_OUT dw_Sts_ModeCurrent af;zle Current mode value
Double
VAR_IN_OUT dw_Sts_StateCurrent Current state value
Word
VAR_IN_OUT dw_GOTScreen_SW Word Current GOT screen selection
VAR_IN_OUT dba_Sts_ModeBits(0..31) ilrtray Current mode Bit value

4 Function Block: PackML_ModeStateTimes

4.1 Description

The PackML_ModeStateTimes accumulates the timer values for all configured states and modes of a unit-machine. It
also accumulate the overall machine time since the last reset. The time unit of each timer is “second,” and each timer
will roll over at 900,000,000 seconds (i.e. 10416.67 days, or 28.5 years).

When any of the timers is rolled over, a TimeRollOverWarning bit will be set. However, the OEM programs will have to
check the timers of current mode and current state to determine which timer has overflown.

The PackML_ModeStateTimes FB utilizes a custom function block “Timer_32Bit_Sec” FB to accumulate current mode
and state time. The function of this FB is also described here.

The PackML_ModeStateTimes function block should be used right after the PackML_ModeStateManager function
block in order to accumulate the time values of the current mode and state properly.

4.2 Timer_32Bit_Sec Function Block

To use the timer, define the beginning value of the timer by inputting the value to the “Start_Timer_Value_FB.” When
the Timer_Enable_FB is set high, the timer will accumulate in seconds and the current timer value can be read from the
Current_Timer_Value_FB label. The maximum value of the timer is 900,000,000 seconds. It will overflow to zero when
it passes the maximum value.

Figure 2 Timer_32Bit_Sec Function Block

If the Timer_Enable_FB bit is off, the timer will hold the current value and shown in Current_Timer_Value_FB. The
timer will be reset to the Start_Timer_Value when it is enabled and the Timer_Reset_FB bit is high. It will continue in
the Reset State until the Timer_Reset_FB bit is off.

0 MITSUBISHI ELECTRIC Part4 - Page 5 Custom Solutions Center
A% AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — Release 4
Part 4: PackML Core Function Blocks

5

Variable Type | Variable Label Data Description
Type
. Double . .
VAR_OUTPUT Current_Timer_Value_FB Word Contains the current timer value.
. Double . s . . .
VAR_INPUT Start_Timer_Value_FB Word Contains the initial value of the timer before it starts accumulating.

VAR_INPUT Timer_Enable_FB Bit Enables the timer to start accumulating.

Resets the timer value to the Start Timer Value. The reset is effective

VAR_INPUT Timer_Reset_FB Bit . .
- - - only when the timer is enabled.

4.3 Function Block Operations

The main functions of the FB consist of (1) managing the mode timer and updating the values of current of
accumulated time of the mode, (2) managing the state timer and updating the values of current and accumulated time
of the state, and (3) managing the timer of the overall machine and updating the values of the machine timer since last
reset. The function block is shown in the figure below:

vib_PackML_ModeSt=teTimes_1
PackML_MedeSizteTimes

- EN ENO
== b_CmdResatCurrentModaTimes ob_TimeRollOverWWamingFE =
= ib_CmdR=z=tAllTimes

—_— dst_PackML

190

Figure 3 PackML_ModeStateTimes Function Block

4.4 Function Block Local Variables
The local variables that are used by the FB are described in this section.

Variable Type | Variable Label Data Description
Type
VAR_OUTPUT ob_TimerRollOverWarningFB Bit Irfesa;y of the timers over flows, this bit will be set until the timer is
VAR INPUT ib CmdResetrCurrentModeTimes Bit When thIS. bit is set, the current mode tm?er values will be cleared to
- - zero and timers of all states of the mode will also be cleared to zero.
VAR INPUT ib CmdResetAllTimes Bit When .thIS .blt |s. set, all timer v.alues, including the overall machine
- - timer (i.e. TimeSinceLastReset) will be cleared to zero.
VAR_IN_OUT dst_PackML SDT PackML FB global variables that need to be updated

Example Use of the PackML Function Blocks

The following example programs demonstrate how these function blocks can be used in an OEM program. The OEM
PackML Implementation Template project will be described in Part 6 of this Users Guide and will have more complete
program routines describing the use of PackML Core Function Blocks.

5.1 Initialization Example
The following rungs only need to be executed on the first scan of the PLC after power-up. They initialize the machine
modes and states for proper operation.

The program file can be register to run under “Initial Program” area of Program Setting in the Project Tree as shown
below:

‘ MITSUBISHI ELECTRIC Part 4 - Page 6 Custom Solutions Center

A% AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — Release 4
Part 4: PackML Core Function Blocks

E1 Module Configuration

= = Program
‘ = 41 Initial
= 5% Mainnit
2 EMO0O_Init
£ EMO1_Init
85 Local Label
& WorkSheet
4 Scan
|t Fixed Scan

@1 No Execution Type

& Unregistered Program
Figure 4 —Example of Setting the Program for Initial Scan Only

1. In this example, there are five valid modes: Mode 1 — Producing, Mode 2 - Maintenance, Mode 3 — Manual, Mode
16 — User Defined 1, and Mode 17 — User Define 2. Rung 2 set up these mode names in PackML_ModeNames. If
there are additional modes for the machine, the user needs to set up additional mode names and logic to populate
the proper labels.

STRINGMOV STRINGMOV STRINGMOV
EN END =l ENO EN END
“Production = s a {_guza_FaciL Moz 13 L — & " cvza PackL_ModeNamesi2] § [Mamar == d = gvza_paceuL
1 _— 3 4 - 5 7 T B
STRINGMOV STRINGMOV STRINGMOV
En =ND =N =N EN o
‘UserDafinel = = 8 — cvza_PackML_ModeNames[iE] | UserDefineZ = = 8 e vz FackML_MoceMames[17]§ [NoMode' == d =] guma_PackiL,
10 B T] 7] | I3 1 i}
T 3 I

Figure 5 — Example of Setting PackML Modes for a Unit Machine

2. The following rung sets up all the state names in PackML_StateNames.

STRINGHOV STRINGUOY [strmawov
EN ENO EN ENO EN ENO§
Ciearng’ . 4 e PaciL SsHames]) St s o il) Soing s A
B - a = - F = L
[stRmcuov | [stRmcuov | [stRmcmov |
N o ex o en cno
s o e e FocL b [Eumendes = e P] Erra i
= - o T = £ £ L
STRNGMOV STRINGUOV [strmawmov
N o N o =Y o
i = A Foo Cetame] § [oy = s e FaaiiL) e e Peoi Eatame)
- 5 0 = = =
= o =
STRINGMOV STRINGMOV [sTrRmawov |
EN ENO EN ENO EN ENO§
([Foigmg 4 e Pl SmeNames O [Red = e Pl Tnboiging = = i {gen_PociiL_:)
% = = . = S =
=]
[stRmcuov | [stRmcuov | [stRmcmov|
EN ENO EN ENO EN ENO§
4 grn Pacdll_Smtames15]} [Unsuspending — = a gvea Facll_Smhemes[id]) Tz s A ve=_FachiL_SmieNames[is
= @ - ® o S &
% = &
STRINGMOV STRINGUOY
N o N o
s 4 e PoriiL_Smeames[iE } [Compem = a
o = i w =

Figure 6 - Example of Setting PackML States for a Unit Machine

0 MITSUBISHI ELECTRIC Part 4 —Page 7 Custom Solutions Center
A7 AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — Release 4

Part 4: PackML Core Function Blocks

3. The following rung configures the states in each mode that mode transitions are allowed.

Figure 7 - Example of Setting States that Mode Transition are Allowed

4. The Following rung configures the states that are disabled in each mode.

v pacis_sromarsanie a1
Packal_siaieDisatie_Sat

e, pacion_Swmoisssie Set 3
"

e o

(W= _oda
T

vh_Pacisa_stetenizarie set s
R ——

e e

kL Y, Uzatatnadi— _cda
=)

T e s — o_casrrg
o sertng — sty
TRUE e Suspences o —
=0
— F— e_Stopsing
=
FALEE 1 oAb — tbonng
=
e in_soang — g
=
= Heid TRUE — lo_kaid = la_Haid
=
|| = uneiing TRUE - o enolang I tersizeg
=
o L — TRE [to_suspenang I o_susmenang
£ =
J— =.unsussenang TRUE e e umsssnaang — umnsnanang
=
- eresating FALEE 1 o Resemen o Resstzng
= 7
I L F S — b_compieteg
= i
1 mcomeien TR oo TRUE i _cempen
£ s
| ava_pcian_ b e ot gitn Facin o Py e Facti_gpinanamates | dos_Packil § i rasoi s 1 aba_Pacian ‘
= = = Z = = _—

Figure 8 - Example of Setting States that are Disabled in Each Mode

5. The following rungs initializes the machine to Mode 0 (NoMode) and State 2 (Stopped) before execution, and

updates the current mode name and state name in the proper labels.

Diagiy B prope Bkt Babed ot Mode Semng

Figure 9 - Example of Setting Initial State and Mode of the Unit Machine

’ MITSUBISHI ELECTRIC
AV AUTOMATION, INC.

Part 4 —Page 8

Custom Solutions Center

Mitsubishi PackML Implementation Templates — Release 4
Part 4: PackML Core Function Blocks

5.2 Example of Calling Function Blocks

1. The following rung calls the PackML_ModeStateManager function block to start the PackML operation. One should
realize that the variables connected to the inputs and outputs of the FB members of the label PackML with the
structured data type. The OEM programs should properly set up these values before the function block is called.

wi_PackML_L
PackML_ModeStataManager
I EN END
fzvs:_PackMLb_CmdResej== ib_CmdResst Ob_FB_Cleafing e zvst PackML]

b_CmcStan ob_FB_Stopped zvst_FacklLk_StateSwopred
170

b_CmaStop ob_FB_Starting ————— _svst_PackML b_StateStarting

b_CmcHold ob_FE_ldle =————r' svst PackMLb_Stteldie

b_CmdUnhald ob_FB_Suspended = svst_PackML b_StateSuspended)
i)

b_CmaSuspend ob_FB_Execute ————— svst_PacklMLb_StateExscuts
7

b_Cmclnsuspend ob_FB_Stopping ———ry svst_Fack =t=Stopping
E

b_CmdAbort ob_FB_Abarting

b_CmdClear 0b_FB_Abarted —

b_CmeStareComplate ab_FB_Holding s

b_CigRemoteCmdEnable ob_FB_Held —

b_ mdC ob_FB_UnHalding == _svst_PackML b_SttelUnHolding

b_inpRemateStateCmd ob_FE_Suspending ————ry svst Pa

svst_PackMLbinp_RemateStateCmdChangeRequest j——— ibinpRemoteStateCmdChangeRequest ab_F8_UnSuspending ————— _svst_ PackMIL b_StatelinSuspending
161 82

ob_FB_Resetiing ML b_StteRessting

ob_F8_Completing t_PackML b_StateCompleting
184

ob_FB_Complete memmm{_svst_PackMLb_StateCamplste
E

ob_FB_ModeChangeNotAllowsd

svs1_PackbLb_ModeChangeNathliowsd

svst_PackML.d_CmaMode—| id_CmdMoge

§_svs:_PackMLd_inp, — id_InpRemoteModeCmd

svst urrent— dw_Sts_ModeCusrent

5
Svst_PackML d_Sts_StateCurent— dw_Sis_StateCurrent
165

=vw_GOT_Screen_Swach— dw_GOTScreen_SW

vst_PackhL ba_S
167

dha_Sts_ModeBits

Figure 10 - Calling the PackML_ModeStateManager Function Block

2. The PackML_ModeStateTimes function block is then called to start accumulate timer values.

vib_PackML_ModeStateTimes_1
PackML_ModeStateTimes

EN END

gvb_PackML_Res_
| } ib_CmdResetCurrentModeTimes ob_TimeRallOverWamingFB { gvb_TimeRallOverWarning
191

187

ib_CmdResetAllTimes

svst_PackML = dst_PackML

189

190

gvb_PackML_Res_
1L
LI)

1E8

Figure 11 - Calling the PackML_ModeStateTimes Function Block

0 MITSUBISHI ELECTRIC Part4 - Page 9 Custom Solutions Center
A% AUTOMATION, INC.

. MITSUBISHI ELECTRIC
AW AUTOMATION, INC.

Engineering Group

Users Guide

OEM PackML Implementation Templates

Release 4, Version 1.0

Content

A) (o e [V 4o 3 TSP PRSP 1
2 Overview of the Event Handling PhiloSOPNY.......coo ittt e e e e et e e e aee e e s snte e e e sataeeesanaeeesnaeeean 1
3 Overview of the Alarm and Event Handling FUNCLION BIOCKS.ciiiiiiiiiiiiie ettt ettt e e et e e et e e enae e e s eneee s 2
3.1 (@11 I V7= oY o VT o Yot [o T 2] [o Yol QTP UUP 2
3.2 Event_Manager FUNCLION BIOCKcc.uuiiiiiiee ettt e e ettt e e e e e e ettt e e e e e e e aataeeeeeeseaansbaseaeaeeennnssaneeassesannsen 2
33 Event_Summation FUNCHION BIOCKuuiiiiiiiiiiiiee ettt ettt e e e ettt e e e e e e et b e e e e e e s eesaabbaseeeeseennnsbeneeaeeesnnses 2
3.3.1. Event_SummationBegin FUNCLION BIOCKccccuiiiiiiiee ettt e et e e st e e s earae e e s e e e enraeeennees 2
3.3.2. Event_SummationENd FUNCLION BIOCKcuviiiiiiiie ettt e e st e e et e e s rnea e e e ennt e e e eneaeeennnes 2
3.4 (VYo Yo T WY ot o o -1 Yol USRS 2
O S V] Yot T T o = oYl S @ 1Y, V7T o SRR 3
4.1 DS T P ION e 3
4.2 FUuNction BIOCK LOCAl Variablesoo ittt sttt b e e sae e s be e e s e earee 3
4.3 Event Related StruCtUIrEd Data Ty PO . .uuuiiiiie ettt e e ettt e e e e ettt e e e e e e e ettt e e e e e e e e aasaeeeeaeseasansbaseaasseannntsaaeeaeeeannnses 4
05 0 O 0 B N A V2= o] a0 T (0 =T W D = - I Y o SRR 4
4.3.2. SDT_EventCfg StruCtUred Data TYPe..ccccuieeeceieeeeiieee ettt e eettee e ettt e e s stee e e e saeteeestteeeestaeessnseseesnsseeessssaeesnnseeesssseenanns 4
L 0 T Bl B V=T o}) =1 AU [P P PP PRPPPPPPPPPPPPPPPPPPRE 5
4.4 (VT aToruToT T 21 ool Q@] o 1T | 4 o] o -3 USRS 6
L o N o [oV o] =T Y =1 g (Y D= - TS PURR 7
L s O A =Y 0 0 1] =Y (U = 1Y/ [0 U UPURR 7
4.4.1.2. AlarmStatus_Event_EMOO (When EVENT iS @CHIVE)......ciiiiuiiieiiiee ettt ettt e e et e e eearee e eete e e e eareeeeans 7
4.4.1.3. AlarmStatus_Event_EMOO (when Event becomes iNACIVE).......ccccuuiiieiuiieeeiiie ettt et 8
L S V1 ot oY oW =1 [Yol R eV =T oL 1Y F= Yo = =T oSS 8
5.1 (D<ol o1 o] o I UR OO T P P PP PPPPUU P PP PP PP PPPPPPPPPPN 8
5.2 FUNCtion BIOCK LOCAl VAriablescoviiuiiiiiieeee ettt s s s e sr e n e 9
5.3 UL e YoruToT T 2 ool Q@] o T=T o | 4 o] o V-SRI 10
5.4 Example of Using CM_Event and EVENt_Manager FBScciiiiiiiiiiiiiiie e ceciiteeee e ceectvee e e e e s e eeatraaeeeeeeesabaaaeeeaeeennnnns 10
6 Function Blocks: Event_Summation, Event_SummationBegin, Event_SummationEndccccoveeiieiiiciiiiieeee e e, 12
6.1 DS P ION e 12
6.2 FUNCtion BIOCK LOCAl VAri@blesco.eiiueeiiiiieieeee ettt st e sne e 13
6.2.1. Even_Summation FB Variablesccuiiiiiiiie ettt et e e s st e e e e e e e s nte e e e st e e s ennae e e enre e e e ntaeeeaanaes 13
6.2.2. Even_SummationBegin FB Variablesc.ceeiiiiiiiiiiie ettt et s e st e e e st e e e ennae e e e nt e e e entae e e nnnaes 14
6.2.3. Even_SummationNENd FB Vari@blesccceeiieiiiiei ettt ettt s e e st e e e st e e e e e nae e e snbe e e eneaeeeeanaes 14
6.3 Event Summation Related Structured Data Ty Pe. ..o ettt e e e e et e e e e e e et ra e e e e e e e e s nbaaaeeaeeeenanees 15
@ MITSUBISHI ELECTRIC Part 5 i Custom Solutions Center

A% AUTOMATION, INC.

6.3.1. SDT_EventSummation Structured Data TYPEuceeccueieiiiieeeciiee e ettt e srteeeestre e e ssaaeesnteeeesataeesensseeessseeesnnsseessnsens 15

6.4 VT g YoraToT T 2 ool Q@] o T=T o | 4 o] o TS 16
/A V1o Vot T oW =] ool S V=T o} fl Yo] o USSP 17
7.1 DS I P ION e, 17
7.2 Function BIOCK LOCAl Variablescoiiiiiiiiie ettt sttt ettt s e sabe e sneesaneesas 18
7.3 FUNCLION BIOCK OPEIAtIONSuuiiiiiiiei ettt ettt e e e e ettt e e e e e e e e eaabbeeeeeeeesasbbaseaeaseasnnsaaaeaaeeeaannsasseaaaseannnses 18
¢ MITSUBISHI ELECTRIC Part 5 —ii Custom Solutions Center

A% AUTOMATION, INC.

Revision History

Version

Revision Date

Description

R4 V1.0

January 31, 2016

Initial release of PackML OEM Implementation Templates Release 4

‘ MITSUBISHI ELECTRIC
A% AUTOMATION, INC.

Part 5 — iii Custom Solutions Center

Mitsubishi PackML Implementation Templates — Release 2
Part 5: Event Handling FBs

1 Introduction

The purpose of this document is to describe the design considerations and implementation approaches of implementing
PackML Alarm and Event handling function blocks in the Mitsubishi PackML OEM Implementation Template.

Even though alarm and event handling methods are not specified in or required by the PackML standard, it is beneficial to
end users since standard alarm and event handling implementations in machine program promote consistent operations
across multiple machines in a factory.

The Mitsubishi implementation of PackML Alarm and Event Handling Function Blocks follows the philosophy and methods
shown in the OMAC Users Group PackML Implementation Guideline.

The design of these function blocks and how they can be used in a machine program implementation are described in this
document. Descriptions are included on how to expand or modify the design of these function blocks to accommodate
different fault handling philosophy of a particular user. However, the modifications that can be made are minor in nature.
Totally different fault handling philosophy will require re-write of these function blocks.

The function blocks are implemented using Mitsubishi GX Works2 Structure Text Programming language and label
programming methods.

2 Overview of the Event Handling Philosophy

The high-level overview of the implementation of Mitsubishi Alarm and Warning Event handling methods is described in
this section. The alarm and warning events are together referred to as events in this document.

e The function blocks can be used to handle alarms and warning events separately or as one type of events. If a user
determines to treat alarms and warning events separately, the same function blocks can be used to handle both
types of events. The user will have to keep track of the alarms and warnings separately. For example, one
Event_Manager FB is used to process alarm events of an equipment module and a second Event_Manager FB used
to process warning events of the same module.

e The design of the function blocks can handle events up to 10 different categories. A user can determine how many
categories are necessary for his applications.

e A user can also determine how the machine should react to any of these categories of events. The implemented
actions in the template software (as described below) can be easily modified to behave differently.

0 In the Mitsubishi PackML Implementation Template package, Category 0 and Category 1 events will cause
a PackML Abort command to be issued and the PackML state machine will transition into “Aborting” state.

0 In the Mitsubishi PackML Implementation Template package, Category 2, Category 3, and Category 4
events will cause a PackML Stop command to be issued and the PackML state machine will transition into
“Stopping” state.

0 In the Mitsubishi PackML Implementation Template package, Category 5 through Category 9 events will
not cause any PackML command to be issued. The PackML state machine will remain at its current state.
The user is responsible to determine what action(s) the machine should take.

e When an event becomes active then inactive and active again before an “Event Reset” command is issued to the
Event_Manager, the second activation of the event is considered the same event as before and not a new event.
The Trigger bit of the event (refer to Section 4.3.1below for the Structured Data Type of an event) will reflect the
status of the event.

e The Event_Manager and Event_Summation FBs capture the first out event of an equipment module and the unit
machine respectively. These FBs also capture the first out event of each event category separately.

e When PackML State Machine is in the Resetting State or Clearing State, an Alarm Reset Command will be issued to
Even_Manager function blocks to clear all latched event flags.

Q MITSUBISHI ELECTRIC Part 5 - Page 1 Custom Solutions Center
A% AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — Release 2
Part 5: Event Handling FBs

3 Overview of the Alarm and Event Handling Function Blocks

3.1 CM_Event Function Block

The CM_Event FB is mainly used in Control Module routines to capture an alarm or warning event. It copies an event
configuration in the overall Equipment Module event list when the input event occurs. The event is latched on even
when the event condition becomes false. The event will stay latched until a reset command is issued to the
Event_Manager FB for the particular Equipment Module. Each event will require an instance of this FB.

3.2 Event_Manager Function Block

One and only one Event_Manager Function Block is required to manage the alarms for each Equipment Module. When
required, a second Event_Manager is used to manage warning events of the same Equipment Module.

The main function of the Event_Manager Function block is to collect all events from all Control Modules of a particular
Equipment Module and create one list of the events for this Equipment Module.

The FB summarizes the data and identifies the “First-Out” event of the Equipment Module as well as the “First Out”
events of each Event Category. The FB also unlatches Control Module events when a Reset Command is received.

3.3 Event_Summation Function Block
The Event_Summation FB is used at the Unit Machine level and it aggregates the alarms or warning events from all
Equipment Modules within the Unit Machine.

It identifies the “First Out” event for the Unit Machine and also the “First Out” event for each fault categories at the
Unit Machine Level.

The Event List of one of the Equipment Module is fed to the FB and the FB is called to produce an event list of the Unit
Machine. The Event List of the second Equipment Module is then fed to the FB and the FB is called again to aggregate
the two Equipment Module Event lists to the Unit Machine Event List. This process continues until all the event lists of
Equipment Modules of the Unit Machine are consolidated.

3.3.1. Event_SummationBegin Function Block

The Event_SummantionBegin Function Block should be called before the first Event_Summation FB is executed.
The purpose of this FB is to initialize the Event List of the Unit Machine before it is populated with the events from
all equipment modules.

3.3.2. Event_SummationEnd Function Block

The Event_SummantionEnd Function Block should be called after the last Event_Summation FB is executed. The
purpose of this FB is to clear the un-used array elements of the Unit Machine Event List.

3.4 Event_Sort Function Block
The Event_Sort Function Block performs the following functions:
e Processing the Unit Machine Event List and producing a list of all active events;
e Processing the Unit Machine Event List and producing a list of all active events of a selected category of events;

e Processing the Unit Machine Event List and producing a list of all events (both active and non-active) of a
selected event category;

e Sorting the Unit Machine Event list by event time, regardless of event category, from the earliest event to the
latest event;

e Sorting the Unit Machine Event list by event time of a selected category, from the earliest event to the latest
event;

& MITSUBISHI ELECTRIC Part 5 - Page 2 Custom Solutions Center
A% AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — Release 2
Part 5: Event Handling FBs

4.1 Description

Function Block: CM_Event

CM_Event FBs are used in Control Module routines to capture alarm or warning events. One instance of the CM_Event
function block is required to capture a single alarm or event. This FB is generally used in a Control Module routine to
capture events generated in that particular Control Module operation.

The structure of a CM_Event Function Block is shown in the figure below:

vib CM_Event 1
CM_Event

ib_ CM_Event_In ob_Sts_Active
ist_CM_Cfg_Event ob_Sts_Latched
is_CM_Cfg_MessagePrefix

dst CM_Inp_EventStatus

dsta_CM_Inp_EventStatus Event

=

Figure 1 — CM_Event Function Block with Inputs and Outputs

It copies an event configuration in the overall Equipment Module event list when the input event occurs. The event is
latched on even when the event condition becomes false. The event will stay latched until a reset command is issued to
the Event_Manager FB for the particular Equipment Module. Each event will require an instance of this FB.

4.2 Function Block Local Variables

The local variables that are used by the FB are described in this section. There are four types of local variables:

e Input Variables — The values of these variables need to be properly set / defined by connecting proper logic or
variable inputs to the FB before execution.

e Output Variables — The values of these variables will be properly set or defined after the execution of the FB is
completed. If a user of the FB can chose not to use the results of the output variables.

e In_Out Variables — The variables that are set by the connecting logic, but the values are then processed by the
FB logic and the resulting values are written to the variables connected to the outputs.

e Variables — Those labels used internally in the FB that will not be exposed externally.

The following table describes the Input, Output, and In_Out variables used by the function block. The details of
Structured Data Types are defined in Section 4.3 below.

Variable Type Variable Label Data Type Description
VAR_OUTPUT ob_Sts_Active Bit This bit is on when the event is currently active.
. This bit is on when this event has been active at least
VAR_OUTPUT ob_sts_Latched Bit once since the last reset of events.
VAR INPUT ib CM Event In Bit When this bit is on, it indicates that an alarm or event
- - - - active and may need to be captured.
. This structured variable contains the information of the
VAR_INPUT ist_ CM_Cfg_Event SDT_EventCfg alarm or event
VAR INPUT is CM Cfe MessagePrefix String(16) This variable contains any prefix that can be appended to
- —-M_Te g g the alarm message
¢ MITSUBISHI ELECTRIC Part 5 - Page 3 Custom Solutions Center

A% AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — Release 2

Part 5: Event Handling FBs

Variable Type Variable Label Data Type Description
This structured variable contains the event status of an
VAR_IN_OUT dst_CM_Inp_EventStatus SDT_EventStatus equipment module where this partlcular.event needs to
be stored and used to update the equipment module
event status
The actual list of events of an equipment module. This
VAR_IN_OUT dsta_CM_Inp_EventStatus_Event SDT_Event(0..29) array is limited to the maximum of 30 events per
equipment module.

4.3 Event Related Structured Data Type
4.3.1. SDT_Event Structured Data Type

The SDT_Event is used to describe each alarm or warning event.

Label Data Type Description
d_ID Double Word[Signed] An unique value assigned to each event as defined by an end user
Value can be used to specify additional details associated with an event. For
d Value Dousle Wordlsigned] | o o icicate which E.top P s presee. The ase of hisfild
determined by users of the FB.
s_Message String(50) Text message of the event, up to the maximum of 50 characters.

wa_TimeEventArray | Word[Signed](0..6)

The actual time, read from the PLC, when the event occurs. The QPLC format is as
follows:

[0
1
[2
3
(4
[5
[6

: Year (1980 to 2079)

: Month (1-12)

: Day (1-31)

: Hour in 24 hour clock format (0 to 23)
: Minutes (0-59)

: Seconds (0-59)

: Day of week (0-6)

wa_TimeAckArray Word[Signed](0..6)

The actual time, read from the PLC, when the event condition clears.

[0
1
[2
3
[4
[5
[6

: Year (1980 to 2079)

: Month (1-12)

: Day (1-31)

: Hour in 24 hour clock format (0 to 23)
: Minutes (0-59)

: Seconds (0-59)

: Day of week (0-6)

d_Category Double Word[Signed]

The category of the event. The current design allows Categories 0 through 9.

b_Trigger Bit

1: the event is active
0: the event is not active

4.3.2. SDT_EventCfg Structured Data Type

This SDT is mainly used to define a particular alarm or warning event.

Label Data Type Description
d_ID Double Word[Signed] An unique value assigned to each event as defined by an end user
Value can be used to specify additional details associated with an event. For example, an
d_Value Double Word[Signed] alarm ID of 1 may indicate an E-Stop PB is pressed, but the alarm value may be used to
indicate which E-Stop PB is pressed. The use of this field is determined by users of the FB.

‘ MITSUBISHI ELECTRIC
A% AUTOMATION, INC.

Part5—Page 4

Custom Solutions Center

Mitsubishi PackML Implementation Templates — Release 2
Part 5: Event Handling FBs

Label Data Type Description
s_Message | String(34) Text message of the event, up to the maximum of 34 characters.
d_Category | Double Word[Signed] The category of the event. The current design allows Categories 0 through 9.

4.3.3. SDT_EventStatus

the event becomes inactive.

Label Data Type Description
Double . .
d_Sts_NumEvents WordSigned] The number of events in the Event List
Double .
d_Sts_NumAllEvents) The total number of events that are active
Word[Signed]
b_Sts_Category_0_Latched Bit A Category 0 event has occurred and flag is latched until event is reset
b_Sts_Category_1_Latched Bit A Category 1 event has occurred and flag is latched until event is reset
b_Sts_Category_2_Latched Bit A Category 2 event has occurred and flag is latched until event is reset
b_Sts_Category_3_Latched Bit A Category 3 event has occurred and flag is latched until event is reset
b_Sts_Category_4_Latched Bit A Category 4 event has occurred and flag is latched until event is reset
b_Sts_Category_5_Latched Bit A Category 5 event has occurred and flag is latched until event is reset
b_Sts_Category_6_Latched Bit A Category 6 event has occurred and flag is latched until event is reset
b_Sts_Category_7_Latched Bit A Category 7 event has occurred and flag is latched until event is reset
b_Sts_Category_8_Latched Bit A Category 8 event has occurred and flag is latched until event is reset
b_Sts_Category_9_Latched Bit A Category 9 event has occurred and flag is latched until event is reset
b_Sts_Category_0_NotLatched Bit A Category 0 event.has f)ccurred and flag is NOT latched. The flag is reset when
the event becomes inactive.
b_Sts_Category_1_NotLatched Bit A Category 1 event.has gccurred and flag is NOT latched. The flag is reset when
the event becomes inactive.
b_Sts_Category_2_NotLatched Bit A Category 2 event.has gccurred and flag is NOT latched. The flag is reset when
the event becomes inactive.
b_Sts_Category_3_NotLatched Bit A Category 3 event.has 9ccurred and flag is NOT latched. The flag is reset when
the event becomes inactive.
b_Sts_Category_4_NotLatched Bit A Category 4 event.has Qccurred and flag is NOT latched. The flag is reset when
the event becomes inactive.
b_Sts_Category_5_NotLatched Bit A Category 5 event.has gccurred and flag is NOT latched. The flag is reset when
the event becomes inactive.
b_Sts_Category_6_NotLatched Bit A Category 6 event.has Qccurred and flag is NOT latched. The flag is reset when
the event becomes inactive.
b_Sts_Category_7_NotlLatched Bit A Category 7 event.has gccurred and flag is NOT latched. The flag is reset when
the event becomes inactive.
b_Sts_Category_8_NotLatched Bit A Category 8 event has occurred and flag is NOT latched. The flag is reset when

‘ MITSUBISHI ELECTRIC
A% AUTOMATION, INC.

Part 5 —-Page5

Custom Solutions Center

Mitsubishi PackML Implementation Templates — Release 2
Part 5: Event Handling FBs

Label Data Type Description
b_Sts_Category_9_NotlLatched Bit A Category 9 event.has Qccurred and flag is NOT latched. The flag is reset when
the event becomes inactive.
b_Sts_EventActive Bit This flag is set when there is an active event
Double L . . :
d_Wrk_ResetID This is an internal variable for FBs use. Do not modify the values.

Word[Signed]

d_Wrk_EventArraySize Double. This is an internal variable for FBs use. Do not modify the values.
Word[Signed]

d_Wrk_StringEventSize Double. This is an internal variable for FBs use. Do not modify the values.
Word[Signed]

d_Wrk_UpdateEventListID Double. This is an internal variable for FBs use. Do not modify the values.
Word[Signed]

4.4 Function Block Operations
The following example is used to describe how to use the CM_Event function block:

wib_CM_Event 1
CM_Event

I svb_GOT_EventSt..
| | ib_CM_Event_In ob_Sts_Active

| 1T
1
gvsta_AlarmCfg[2]== ist_CM_Cfg_Event ob_Sts_Latched
2

zcE_Message_Preﬁx_CMUﬂ— is_CM_Cfg_MessagePrefix
3
[gvst_AlarmStatus_EM00 — dst_ CM_Inp_EventStatus [gvst_AIarmStatus_EMUUﬁ
4
: gvsla_AIarmStatus_Event_EMUD]— dsta_CM_Inp_EventStatus_Ewvent _r gvsta_AIarrnStatus_Event_EMUU]
5

[
Figure 2 — Example of CM_Event Function Block

e When a “STOP” key for “Equipment Module 00” on an operator interface is pressed, the status of
AlarmStatus_EMOO0 is updated with the information of the alarm that is configured in AlarmCfg[2] and
Message_Prefix_CMO02. This alarm configuration needs to be initialized by the end user before calling the FB
and the happening of the actual event.

0 AlarmCfg[2].id:=65;

0 AlarmCfg[2].Value:=0;

0 AlarmCfg[2].Message:="Stop PB Pressed";
0 AlarmCfg[2].Category:=2;

0 Message_Prefix_CM02:= “HMI “

e The actual alarm information (e.g. ID, Message, Time of Active) is recorded in the AlarmStatus_Event_EMOO
array. The Sts_Active and Sts_Latched bits are set high.

e When the “STOP” key of “Equipment Module 00” becomes inactive, the Acknowledge Time is recorded and
the Sts_Active bit is reset. However, the Sts_Latched bit is still high until a reset command is issued to the
Event_Manager FB (Refer to Section 5 of this document).

Q MITSUBISHI ELECTRIC Part 5 —Page 6 Custom Solutions Center
A% AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — Release 2
Part 5: Event Handling FBs

4.4.1. Examples of Alarm Data
4.4.1.1. AlarmStatus_EMO00

The before values are the values of AlarmStatus_EMOO before any event occurs. After the GOT_StopKey is
pressed, the values of AlarmStatus_EMOO were updated by the CM_Event FB and are shown as below:

Label Value (before) Value (After)
Sts_NumEvents 0 1
Sts_NumAllEvents
Sts_Category_0_Latched
Sts_Category_1_Latched
Sts_Category_2_Latched
Sts_Category_3_Latched
Sts_Category_4_Latched
Sts_Category_5_Latched
Sts_Category_6_Latched
Sts_Category_7_Latched
Sts_Category_8_Latched
Sts_Category_9_Latched
Sts_Category_0_NotlLatched
Sts_Category_1_Notlatched
Sts_Category_2_NotlLatched
Sts_Category_3_NotlLatched
Sts_Category_4_Notlatched
Sts_Category_5_NotlLatched
Sts_Category_6_NotLatched
Sts_Category_7_NotlLatched
Sts_Category_8_NotlLatched
Sts_Category_9_Notlatched
Sts_EventActive

o|Oo|0o|0O|O|O|0O|O|0O|0O|O|O|O|O|O|(O|O|O|O|O|O|O
R|O|O|O|O|O|O|O|Rr|O|O|O|O|O|O|(O|O|O|R|O|O|F

4.4.1.2. AlarmStatus_Event_EMOO (when Event is active)

The actual event list of Equipment Module 00 is an array of 30 elements. Before any event, the array contains
elements with zero values after initialization.

After the GOT_StopKey is set high, the alarm is recorded in the event list, and the configuration AlarmCfg[2]
was copied into the first array location together with the time value when the event occurs.

Label Value (before) Value (After)
[0]

ID 0 65

Value 0 0

Message HMI STOP PB Pressed

TimeEventArray
[0] 0 2010
[1] 0 6
[2] 0 28
[3] 0 9
(4] 0 15
[5] 0 7
[6] 0 1

TimeAckArray
[0] 0 0
[1] 0 0
[2] 0 0
[3] 0 0
[4] 0 0
[5] 0 0
[6] 0 0

Category 0 2

Trigger 0 1

@ MITSUBISHI ELECTRIC Part 5 - Page 7 Custom Solutions Center

A% AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — Release 2
Part 5: Event Handling FBs

Label Value (before) Value (After)

4.4.1.3. AlarmStatus_Event_EMO0O0 (when Event becomes inactive)

After the GOT_StopKey becomes low, the alarm is acknowledged and the time value when the event is
acknowledged is recorded. The Trigger bit is reset to indicate that the event is no longer active.

Label Value (Before) Value (After)
[0]
1D 65 65
Value 0 0
Message EMOO HMI STOP PB Pressed HMI STOP PB Pressed
TimeEventArray
[0] 2010 2010
[1] 6 6
[2] 28 28
3]
[4] 15 15
[5] 7
[6] 1 1
TimeAckArray
[0] 0 2010
[1] 0 6
[2] 0 28
[3] 0 9
[4] 0 26
[5] 0 6
[6] 0 1
Category 2 2
Trigger 1 0
[1]
[2]
[29]

5 Function Block: Event_Manager

5.1 Description
The main purpose of the Event_Manager Function Block is to consolidate all events created by all Control Modules of a
particular Equipment Module and create one list of the events for this Equipment Module.

One and only one Event_Manager Function Block is required to manage the alarms for each Equipment Module. When
required, a second Event_Manager instance is used to manage warning events of the same Equipment Module if a user
chooses to handle alarms and warning events separately.

The FB summarizes the events and identifies the “First-Out” event of the Equipment Module as well as the “First Out”
events of each Event Category. The FB also unlatches Control Module events of this Equipment Module when a Reset
Command is received.

The structure of the function block is shown in Figure 3 below.

0 MITSUBISHI ELECTRIC Part 5 —Page 8 Custom Solutions Center
A% AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — Release 2
Part 5: Event Handling FBs

vfb_Event_Manager_1
Event_Manager

EN
is_Cfg_MessagePrefix
ib_Cmd_ClearFirstOutEvent

ib_Cmd_Reset

ENO
ob_Sts_Categary_0_Latched
ob_Sts_Category_1_Latched
ob_Sts_Categary_2_Latched
ob_Sts_Category_3_Latched
ob_Sts_Categary_4_Latched
ob_Sts_Category_5_Latched
ob_Sts_Categary_6_Latched
ob_Sts_Category_7_Latched
ob_Sts_Categary_8_Latched

ob_Sts_Category_9_Latched

dst_Inp_EventStatus
dst_Inp_EventSts_FirstOutEvent
dsta_Inp_EventSts_FstOutEventCat

dsta_lnp_EventStatus_Event

Figure 3 — Event_Manager Function Block

5.2 Function Block Local Variables

The Input, Output, and In_Out variables that are used by the FB are described in this section. The details of Structured
Data Types are defined in Section 4.3 .

Variable Type Variable Label Data Type Description

VAR_INPUT is_Cfg_MessagePrefix String(16) This variable contains any prefix that can be appended to
the alarm messages of this equipment module alarm list.

VAR_INPUT ib_Cmd_ClearFirstOutEvent Bit When this bit is set, all First-Out events of this equipment
module will be cleared.

VAR_INPUT ib_Cmd_Reset Bit When this bit is set, all latched events that are not
currently active will be cleared.

VAR_OUTPUT ob_Sts_Category_0_Latched Bit A Category 0 event has occurred and flag is latched until
event is reset

VAR_OUTPUT ob_Sts_Category_1_Latched Bit A Category 1 event has occurred and flag is latched until
event is reset

VAR_OUTPUT ob_Sts_Category_2_Latched Bit A Category 2 event has occurred and flag is latched until
event is reset

VAR_OUTPUT ob_Sts_Category_3_Latched Bit A Category 3 event has occurred and flag is latched until
event is reset

VAR_OUTPUT ob_Sts_Category_4_Latched Bit A Category 4 event has occurred and flag is latched until
event is reset

VAR_OUTPUT ob_Sts_Category_5_Latched Bit A Category 5 event has occurred and flag is latched until
event is reset

VAR_OUTPUT Sts_Category_6_Latched Bit A Category 6 event has occurred and flag is latched until
event is reset

VAR_OUTPUT Sts_Category_7_Latched Bit A Category 7 event has occurred and flag is latched until
event is reset

@ MITSUBISHI ELECTRIC Part 5 — Page 9 Custom Solutions Center

A% AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — Release 2
Part 5: Event Handling FBs

Variable Type Variable Label Data Type Description

VAR_OUTPUT ob_Sts_Category_8_Latched Bit A Category 8 event has occurred and flag is latched until
event is reset

VAR_OUTPUT ob_Sts_Category_9_Latched Bit A Category 9 event has occurred and flag is latched until
event is reset

VAR_IN_OUT dst_Inp_EventStatus SDT_EventStatus | This structured variable contains the event status of an
equipment module

VAR_IN_OUT dst_Inp_EventStatus_FirstOutEvent SDT_Event This structured variable contains the information of the
first out event of the equipment module

VAR_IN_OUT dsta_Inp_EventStatus_FirstOutEventCat | SDT_Event(0..9) This array of structured variables contains the information
of first out events of all event categories

VAR_IN_OUT dsta_Inp_EventStatus_Event SDT_Event(0..29) | The actual list of events of an equipment module. This
array is limited to the maximum of 30 events per
equipment module.

5.3 Function Block Operations

The Event_Manager FB should be called in a program scan after all control modules have been executed, and the
events associated with all control modules have been recorded using CM_Event FBs. In the example below,
AlarmStatus_EMOO and AlarmStatus_Event_EMOO arrays of SDTs have been updated by all CM_Event FBs before the
Event_Manager FB is called.

vib_Event Mansger 1

“Event_Manager
EN ENO Y
| cs_EveriManager Massegelretore= _ Clg_MessogeFrelo ab_Ss_Category_0_Latchad
svt_PockL b_S1
| | b_Cend_CloarFarstOuEvent ob_Sts Category_1_Latched §

’ ib_Cond_Fleset ob_Sts_Category_2_Labched §
vb_AlnmResaiFlag |
] L
110

ob_Sts_Category_3_Latchod §

6
ab_Sts_Category_4_Latched |

ab_Sts_Category_5_Latched §
ob_Sis_Category_B_Laiched §
ob_Sts_Category_7_Labched §
ob_Sts_Category_5_Labched §

ob_Sts_Category_§_Latchod §

gvst_AlarmStatis EMO0 — dst_np_EventSistus ——— st AlarmStatus EMI0)
r;.'r.LAInrm.’{lmm.ir:rclo:lril'f.m— dst_Inp_EventSts_FirstOutEvent b qust_AlnmiStntus_FarstOns_EMO0)
5wm_mmmmm_r.uﬂ..c;_rMm —— dstn_Inp_EventSts_FatOusEventCat b qustn_AlmiStatizs_FirstOutCot_EMOD)
3
_g'—'s'.‘g_r'dn'rl_bt'n’.nl:.l:_':ve:ll_l_:l\‘.l)‘_"_— dstn_Inp_EventStatus_Event " gusln_AlanmSishs_Event EMGO)

w

Figure 4 — Example of Event_Manager Function Block

The Event_Manager function block then appends the EventManager_MessagePrefix to each event message, sorts out
the list of events in AlarmStatus_Event_EMOO and identifies the First Out event for the Equipment module as well as
the First Out events for each event category. The results are wupdated in AlarmStatus_EMOO,
AlarmStatus_FirstPut_EMOO, AlarmStatus_FirstOutCat_EMOO, and AlarmStatus_Event_EMO0O.

5.4 Example of Using CM_Event and Event_Manager FBs

The following logic will capture the events of “Abort”, “GuardDoorOpen”, and “LowMaterial” keys are pressed on a
GOT by the instances of the CM_Event function block. The AlarmStatus_EMO0O and AlarmStatus_Event_EMOO will be
updated with these events.

0 MITSUBISHI ELECTRIC Part 5 - Page 10 Custom Solutions Center
A% AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — Release 2
Part 5: Event Handling FBs

The Event_Manager will then consolidate the events and record the overall first out event of EMOO and first out events
for each category. The results will then be used by Event_Summation FB to produce an event list for the overall unit

pr— gyst_AlarmStstus EMO0D

gvsta_AlarmStatus_Event EMI

gvst_AlarmStatus_EMO0

gvsta_AlarmStatus_Event EMOD

machine.
vifb_CM_Event &
| svb_GOT_EventA_ Hellzom
[| | ib_CM_Ewvent_ln ob_Sts_Active
- qvsta_AlarmCig[4]— ist_CM_Cfg_Event ob_Sts_Latched
26
fcs_Message_Prefix_CMO is_CM_Cfg_MessagePrefix
27
gvst_AlarmStates EMOD dst_CM_Inp_EveniStatus
8
gvsta_AlarmStatus_Event EMOD dsta_CM_Inp_| ;_Event
29
0
vib CM_Event 7
| svb_GOT_GuzrdD._ ERCEE
[| | ib_CM_Ewvent_In oh_Sts_Active
1 .
gvsta_AlarmCfg[6]) ist_CM_Cfg_Event ob_Sts_Latched
12
cs_Message Prefic CMOS=— is_CM_Cfg_MessagePrefix
EE
gvst_AlarmStatus_EMO0 dst_CM_inp_EventStatus
34
1 ;\rs:a_AIarrnSIa'.us_Evert_Er-‘UU] dsta_CM_Inp_| ;_Ewvent
= 6
vfb_CM_Event 2
[svb_GOT_Lowat. ez
1 | ib_CM_Event_In ob_Sts_Active

7

gvsta_AlarmCig[7]=—

ist_CM_Cfg_Ewvent ob_Sts_Latched

gvst_AlarmStatus_EMO0

4 gvstz_AlarmStatus_Event EMOD

£
cs_Message_Prefc CMO7==— is_CM_Cfg_MessagePrefix
ET)
{ gvst_AlarmStatus_EMO0 dst_CM_Inp_EventStatus
40
[;v;'.a_AIarrnS!a'.us_Evert_EI'-‘UU‘.— dsta_CM_Inp_EventStatus_Event
41 - = - = =
vib_Evert_Managar_1

EN

vb_AlnmResatFlag
] L
1T

b Crned_CloarFstOuEvent

I_ ib_Cend_Feset

L]

| _gest_AdarmStatus EMOD —

{ gest_AlarmStatus_FirstOut_EADDm—
“qustn_AlmStatzs_ FirstOutint_ EM) j—
B

{_gveta_AlormSiahus_Event_EMOD

w

dst_np_EventSistus
dst_Inp_EventSts_FirstOutEvent
dstn_Inp_EventSts_FatOusEventCat

dstn_Inp_EventStatus_Event

ENO Y
ab_Sts_Category_0_Latchad §
ob_Sts Category_1_Latched §
oby_Sts_Calegory_2_Lalehed §
ob_Sts_Categary_3_Latched §

ab_Sts_Category_4_Latchod

ob_Sts_Category §_Latched |
ob_Sts_Cnteqory B Latched §
ob_Sts_Category_7_Lalched §
ob_Sts_Calegory 8 Labched §

ob_Sts_Category_§_Latchod §

e Alarmisiess ENOOY
" qust_AlemStatus_FarsrOus_EMOD)
qusts_AlmStatiss_FirstOutCat EMOD

—— gvsln_AlanmSiotus_Event_EMO0)

Figure 5 — Examples of using CM_Event and Event_Manager Function Blocks

‘ MITSUBISHI ELECTRIC

A% AUTOMATION, INC.

Part 5—-Page 11

Custom Solutions Center

Mitsubishi PackML Implementation Templates — Release 2
Part 5: Event Handling FBs

6 Function Blocks: Event_Summation, Event_SummationBegin,
Event_SummationEnd

6.1 Description

The Event_Summation Function Block summarizes the event data from equipment modules (created by using
Event_Manager FBs) and creates a summarized list of events for the unit machine. It summarizes the events by
locating the unit machine first out event and unit machine first out events for all categories that are active.

Additionally, associated function blocks Event_SummationBegin and Event_SummationEnd initializes and cleans-up
the list of events after the summation of events from all equipment modules.

The structure of the Event_Summation function block, Event_SummationBegin, and Event_SummationEnd are shown
in Figure 6, Figure 7, and Figure 8 respectively.

vfb_EventSummation_1
Event_Summation

= EN ENO
ob_Sts_Category_0_Latched
ob_Sts_Category_1_Latched
ob_Stz_Category_2_Latched
ob_Sts_Category_3_ Latched
ob_Sts_Category_4_Latched
ob_Sts_Category_5_Latched
ob_Sts_Category_6_Latched
ob_Sts_Category_7_Latched
ob_Sts_Category_8_Latched
ob_Sts_Category_9_Latched
— dst_Inp_EventStatus o
— dst_Inp_EwventSts_FirstOutEvent —
-_ dsta_Inp_EwiSts_FirstOutEventCat —_—
— dsta_Inp_EventStatus_Event —
-_— dst_Sts_EventSummation —
= dsta_Sts_EventSummation_FirstOut ==
— dsta_Sts_EventSum_FirstOutCat —

— dsta_Sts_EventSummation_Events -

Figure 6 — Event_Summation Function Block

Q MITSUBISHI ELECTRIC Part 5 - Page 12 Custom Solutions Center
A% AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — Release 2
Part 5: Event Handling FBs

vfb_Event Summation_Begin_1
Event_Summaticn_Begin

EN ENO

dst_Sts_EventSummation

dst_Sts_EventSum_FirstOut

dsta_Sts_EventSum_FirstOutCat

dsta_Sts_EventSummation_Events

Figure 7 — Event_SummationBegin Function Block

vib_Ewvent_SummationEnd_1

Event_Summation_End

EN ENO
dst_Sts_EwventSummation
dst_Sts_EventSummation_FirstOut
dsta_Sts_EwventSum_FirstOutCat

dsta_Sts EventSummation_Events

Figure 8 — Event_SummationEnd Function Block

6.2 Function Block Local Variables

The Input, Output, and In_Out variables that are used by the FBs are described in this section. The details of Structured
Data Types are defined in Section 4.3 and Section 6.3 of this document.

6.2.1. Even_Summation FB Variables

Variable Type Variable Label Data Type Description

VAR OUTPUT ob_Sts_Category_0_Latched Bit A Category 0 event has occurred and flag is latched
until event is reset

VAR OUTPUT ob_Sts_Category_1_Latched Bit A Category 1 event has occurred and flag is latched
until event is reset

VAR_OUTPUT ob_Sts_Category_2_Latched Bit A Category 2 event has occurred and flag is latched
until event is reset

VAR_OUTPUT ob_Sts_Category_3_Latched Bit A Category 3 event has occurred and flag is latched
until event is reset

VAR_OUTPUT ob_Sts_Category_4_Latched Bit A Category 4 event has occurred and flag is latched
until event is reset

VAR_OUTPUT ob_Sts_Category_5_Latched Bit A Category 5 event has occurred and flag is latched
until event is reset

VAR_OUTPUT ob_Sts_Category_6_Latched Bit A Category 6 event has occurred and flag is latched
until event is reset

VAR_OUTPUT ob_Sts_Category_7_Latched Bit A Category 7 event has occurred and flag is latched
until event is reset

VAR_OUTPUT ob_Sts_Category_8_Latched Bit A Category 8 event has occurred and flag is latched
until event is reset

VAR_OUTPUT ob_Sts_Category_9_Latched Bit A Category 9 event has occurred and flag is latched
until event is reset

‘ MITSUBISHI ELECTRIC
A% AUTOMATION, INC.

Part 5 —Page 13

Custom Solutions Center

Mitsubishi PackML Implementation Templates — Release 2
Part 5: Event Handling FBs

Variable Type Variable Label Data Type Description
VAR IN OUT dst_Inp_EventStatus SDT EventStatus This structured variable contains the event status of
an equipment module that will be summarized
) This structured variable contains the information of
VAR_IN_OUT dst_Inp_EventStatus_FirstOutEvent | SDT_Event the first out event of the equipment module that will
be summarized
dsta_Inp_EventStatus_FirstOutEve This array of structured variables contains the
VAR_IN_OUT ntCat SDT_Event(0..9) information of first out events of all event categories
that will be summarized
The actual list of events of an equipment module
VAR_IN_OUT dsta_Inp_EventStatus_Event SDT_Event(0..29) that will be summarized. This array is limited to the
maximum of 30 events per equipment module.
VAR IN OUT dst Sts EventSummation SDT EventSummation | This structured variable contains the event status of
the overall unit machine
VAR_IN_OUT dst_Sts_EventSummation_FirstOut SDT_Event This structured variable contains the information of
the first out event of the unit machine
dsta_Sts_EventSummation_FirstOu This array of structured variables contains the
VAR_IN_OUT tCat SDT_Event(0..9) information of first out events of all event categories
of the unit machine
. The actual list of events of the unit machine. This
VAR_IN_OUT dsta_Sts_EventSummation_Events SDT_Event(0..99) array is limited to the maximum of 100 events per
unit machine.

6.2.2. Even_SummationBegin FB Variables

Variable Type Variable Label Data Type Description

VAR IN OUT dst Sts EventSummation SDT EventSummation | This structured variable contains the event status of
the overall unit machine

VAR_IN_OUT dst_Sts_EventSummation_FirstOut SDT_Event This structured variable contains the information of
the first out event of the unit machine

dsta_Sts_EventSummation_FirstOu This array of structured variables contains the

VAR_IN_OUT tCat SDT_Event(0..9) information of first out events of all event categories
of the unit machine
The actual list of events of the unit machine. This

VAR_IN_OUT dsta_Sts_EventSummation_Events SDT_Event(0..99)

array is limited to the maximum of 100 events per
unit machine.

6.2.3. Even_SummationEnd FB Variables

tCat

Variable Type Variable Label Data Type Description
VAR IN OUT dst Sts EventSummation SDT EventSummation | This structured variable contains the event status of
the overall unit machine
VAR IN OUT dst Sts EventSummation FirstOut | SDT Event This structured variable contains the information of
the first out event of the unit machine
i i This array of structured variables contains the
VAR_IN_OUT dsta_Sts_EventSummation_FirstOu SDT_Event(0..9)

information of first out events of all event categories
of the unit machine

‘ MITSUBISHI ELECTRIC

A% AUTOMATION, INC.

Part 5 —Page 14

Custom Solutions Center

Mitsubishi PackML Implementation Templates — Release 2
Part 5: Event Handling FBs

6.3

Variable Type Variable Label

Data Type Description

VAR_IN_OUT dsta_Sts_EventSummation_Events SDT_Event(0..99)

The actual list of events of the unit machine. This
array is limited to the maximum of 100 events per
unit machine.

Event Summation Related Structured Data Type

6.3.1. SDT_EventSummation Structured Data Type

Label Data Type Description
Double

d_Sts_NumEvents Word[Signed] Total number of events

b_Sts_Category_0_Latched Bit A Category 0 event has occurred and flag is latched until event is reset

b_Sts_Category_1_Latched Bit A Category 1 event has occurred and flag is latched until event is reset

b_Sts_Category_2_Latched Bit A Category 2 event has occurred and flag is latched until event is reset

b_Sts_Category_3_Latched Bit A Category 3 event has occurred and flag is latched until event is reset

b_Sts_Category_4_Latched Bit A Category 4 event has occurred and flag is latched until event is reset

b_Sts_Category_5_Latched Bit A Category 5 event has occurred and flag is latched until event is reset

b_Sts_Category_6_Latched Bit A Category 6 event has occurred and flag is latched until event is reset

b_Sts_Category_7_Latched Bit A Category 7 event has occurred and flag is latched until event is reset

b_Sts_Category_8_Latched Bit A Category 8 event has occurred and flag is latched until event is reset

b_Sts_Category_9_Latched Bit A Category 9 event has occurred and flag is latched until event is reset

b_Sts_Category_0_NotLatched Bit A Category O event'has Qccurred and flag is NOT latched. The flag is reset when
the event becomes inactive.

b_Sts_Category_1_NotlLatched Bit A Category 1 event'has Qccurred and flag is NOT latched. The flag is reset when
the event becomes inactive.

b_Sts_Category_2_NotLatched Bit A Category 2 event.has ?ccurred and flag is NOT latched. The flag is reset when
the event becomes inactive.

b_Sts_Category_3_NotLatched Bit A Category 3 event.has ?ccurred and flag is NOT latched. The flag is reset when
the event becomes inactive.

b_Sts_Category_4_Notlatched Bit A Category 4 event.has (.)ccurred and flag is NOT latched. The flag is reset when
the event becomes inactive.

b_Sts_Category_5_NotLatched Bit A Category 5 event'has 9ccurred and flag is NOT latched. The flag is reset when
the event becomes inactive.

b_Sts_Category_6_NotLatched Bit A Category 6 event.has (.)ccurred and flag is NOT latched. The flag is reset when
the event becomes inactive.

b_Sts_Category_7_NotLatched Bit A Category 7 event.has ?ccurred and flag is NOT latched. The flag is reset when
the event becomes inactive.

b_Sts_Category_8_NotLatched Bit A Category 8 event'has Qccurred and flag is NOT latched. The flag is reset when
the event becomes inactive.

b_Sts_Category_9_NotLatched Bit A Category 9 event has occurred and flag is NOT latched. The flag is reset when

the event becomes inactive.

‘ MITSUBISHI ELECTRIC

A% AUTOMATION, INC.

Part 5 - Page 15 Custom Solutions Center

Mitsubishi PackML Implementation Templates — Release 2
Part 5: Event Handling FBs

Label Data Type Description

b_Sts_CurrentActiveEvent Bit This flag is set when there is an active event

d_Wrk_EventArraySize Double This is an internal variable for FBs use. Do not modify the values
- - ¥ Word[Signed] ’ '

6.4 Function Block Operations

This example in Figure 9 below illustrates how the event list of a unit machine is created using the Event_Summation
FBs and Event_SummationBegin and Event_SummationEnd FBs.

e The Event_SummationBegin FB is called first to initialize all structured labels and arrays of structured labels. After
the execution of this FB, all the labels are initialized to zero (values) or blank (strings).

e The Event_Summation FB is called next in Rung 2 to process the alarm information for Equipment Module 00. The
event lists of Equipment 00 are processed and documented in the unit machine event lists AlarmSummation,
AlarmSummation_FirstOut, Alarm_Summation_FirstOutCat, and AlarmSummation_Events.

e The Event_SummationFB is called again in Rung 3 to process the alarm information for Equipment Module 01. The
event lists of Equipment 01 are processed and compared to the information from EMOO that has already been
recorded in the Unit Machine lists. The overall First Out event will be determined and updated when necessary,
and so are the first out events for all categories. The combined information is then recorded in the unit machine
event lists AlarmSummation, AlarmSummation_FirstOut, Alarm_Summation_FirstOutCat, and
AlarmSummation_Events.

e The step is repeated for all other equipment modules when necessary. In this example, there are only two
equipment modules so that the Event_SummationEnd FB is called to clear out the arrays that are not used if the
total number of events is less than the maximum event size of 100.

ob_Sis_Category_0_Laiched
ob_Sis_Category_1_Laiched
ob_Sm_Cetmgory_2_Lsiched
ob_Sm_Cetmgory_3_Lsiched
ob_Sis_Category_4_Laiched
ob_Sts_Cetegary_§_Letched
ob_Sis_Category 6 Laiched
ob_Sm_Cetmgory_7_Lsiched

ob_S_Cetmgory_B_Lsiched

Q MITSUBISHI ELECTRIC Part 5 - Page 16 Custom Solutions Center
A% AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — Release 2
Part 5: Event Handling FBs

ob_Sis_Caiegory_0_Laiched
ob_Sts_Category_1_Laiched
ob_Sts_Cmngery_2_Lewched
ob_Sis_Caiegory_3_Laiched
ob_Sis_Caiegory_4_Laiched
ob_Sts_Cmngery_S_Lewched
ob_Sts_Cmegery_8_Lewched
sb_Sis_Caiegory_7_Laiched
ob_Sis_Caiegory_§_Laiched

ob_Sts_Congery S Lewched

wfo_Evem_SummasionEnd_i
Sver_Summation_End

Figure 9 — Example — Event Summation of a Unit Machine

7 Function Block: Event_Sort

7.1 Description

The Event_Sort function block is used to filter and sort the event list of a unit machine for reporting or display purposes.
It is capable of:

e Processing the Unit Machine Event List and producing a list of all active events;
e Processing the Unit Machine Event List and producing a list of all active events of a selected category of events;

e Processing the Unit Machine Event List and producing a list of all events (both active and non-active) of a
selected event category;

e Sorting the Unit Machine Event list by event time, regardless of event category, from the earliest event to the
latest event;

e Sorting the Unit Machine Event list by event time of a selected category, from the earliest event to the latest
event.

The structure of the Event_Sort function block is shown in Figure 10 below:

Q MITSUBISHI ELECTRIC Part 5 - Page 17 Custom Solutions Center
A% AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — Release 2
Part 5: Event Handling FBs

vib_Event Sort_1
Event_Sort
= EN ENO
= ib_Cmd_FiherActiveEvents od_Sts_SortFiterNumEvents
= ib_Cmd_FilterCategary
= ib_Cmd_Sort
— id_Cfg_FilterCategory
= ib_Cfg_SortCategary
= ist_Inp_EventSummation
= ist_Inp_EventSummation_FirstOut
= ista_Inp_EventSum_FirstOutCat

— ists_Inp_EventSummation_Evants

dsta_Sts_SortFilterEventlist

Figure 10 — Event_Sort Function Block

7.2 Function Block Local Variables

The Input, Output, and In_Out variables that are used by the FBs are described in this section. The details of Structured

Data Types are defined in Section 4.3 and Section 6.3 of this document.

Variable Type | Variable Label Data Type Description

VAR_INPUT ib_Cmd_FilterActiveEvents Bit Setting this bit will filter events that are currently active
and document them in the Sorted List of the Unit Machine

VAR_INPUT ib_Cmd_FilterCategory Bit Setting this bit will filter events in the Category as
specified by Cfg_FilterCategory and document them in the
Sorted List of the Unit Machine

VAR_INPUT ib_Cmd_Sort Bit Setting this bit will sort the events in the Sorted List in
chronological order, from the earliest event to the last
event.

VAR_INPUT id_Cfg_FilterCategory Double Word([Signed] This parameter specifies the Category of events that are
filtered and displayed.

VAR_INPUT ib_Cfg_SortCategory Bit Setting this bit together with the Cmd_Sort will not only
sort the events in chronological order but also group them
by category.

VAR_INPUT ist_Inp_EventSummation SDT_EventSummation | The structured variable contains the information of the
summarized list of events

VAR_INPUT ist_Inp_EventSummation_FirstOut SDT_Event The structured variable contains the first out event
information of the summarized list of the Unit Machine

VAR_INPUT ista_Inp_EventSummation_FirstOutC | SDT_Event(0..9) The array of structured variables contains the information

at of first out event per category of the summarized list of
the Unit Machine.

VAR_INPUT ista_Inp_EventSummation_Events SDT_Event(0..99) The array of events in the summarized list

VAR_IN_OUT Sts_SortFilterEventList SDT_Event(0..399) The list of events after sorting

VAR_OUTPUT od_Sts_SortFilterNumEvents Double Word[Signed] The number of events in the sorted list

7.3 Function Block Operations

An example of using the Event_Sort function block is shown in Figure 11 below.

‘ MITSUBISHI ELECTRIC

A% AUTOMATION, INC.

Part 5 —Page 18

Custom Solutions Center

Mitsubishi PackML Implementation Templates — Release 2
Part 5: Event Handling FBs

vit_Event Sort_1
Ewent_Sort |
I EN ENO §

i vhb_StartFiterActiveEvent = ib_Cmd_FilterActiveEvents od_Sts_SortFilterNumEvents
29 |
: v:_StartFiItarByCatagc'_v‘— ib_Cmd_FilterCategory
E)
v _StartSort == ib_Cmd_Sor
il
{ ww_FilterAlarmCategory = id_Cfg_FilterCategory
=5

[vt_SomAndGroupByCategory — ib_Cfg_SortCategory
EE]

[gvst AlamSummation == ist_Inp_EventSummation
4

ation_FirstOut ist_Inp_EventSummation_FirstOut

gvsta_AlarmSummation_FirstOutCat = ista_Inp_EventSum_FirstOutCat
T

{ gvsta_AlarmSummation_Events = ista_Inp_EventSummation_Events

: gvsta_Alarm3ortedList — dsta_Sts_SonFilterEventlist —_— gvsta_AlarmSortedList [

EL
9

Figure 11 — Example of Event_Sort FB Operations

It is important to know the sequence of the command flags will have effects on how the filtering and sorting work. The
table below summarizes the functions that are executed by setting various flags.

The operations of the commands are summarized in the following table:

Operations

StartFilterByCategory
StartSort
FilterAlarmCategory

StartFilterActiveEvent
SortAndGroupByCategory

o
o
o
>
>

The Sort List will be updated with the AlarmSummation_Events List

The events in the AlarmSummation_Events will be filtered and only active events will be recorded in the
AlarmSortedList

The events in the AlarmSummation_Events will be filtered and events in Category n will be recorded in the
AlarmSortedlList, regardless whether the events are currently active or not.

The events in the AlarmSummation_Events will be filtered and only ACTIVE events in Category n will be recorded in
the AlarmSortedlList.

The events in the AlarmSummation_Events will be sorted in chronological order and recorded in the AlarmSortedList
with the earliest event first.

The events in the AlarmSummation_Events will be sorted in chronological order grouped by category. The events will
0 X 1 1 X be recorded in the AlarmSortedList with the lowest category and earliest event first. StartFilterByCategory flag needs
to be set before the StartSort command.

When StartFilterActiveEvent flag is on then the StartSortFlag is on, the events in the AlarmSortedList will be sorted in
chronological order and recorded in the AlarmSortedList with the earliest event first.

If the StartSortFlag is on first then StartFilterActiveEvent is on, the StartFilterActiveEvent flag will have no effect and
the sorting will be done on the AlarmSummation_Events array instead of AlarmSortedList.

The events in the AlarmSortedlList will be sorted in chronological order grouped by category. The events will be
recorded in the AlarmSortedList with the lowest category and earliest event first.

If the StartSort Flag is on first then StartFilterActiveEvent is on, the StartFilterActiveEvent flag will have no effect and
the sorting will be done on the AlarmSummation_Events array instead of AlarmSortedList.

0 MITSUBISHI ELECTRIC Part 5 - Page 19 Custom Solutions Center
A% AUTOMATION, INC.

. MITSUBISHI ELECTRIC
AW AUTOMATION, INC.

Engineering Group

Users Guide

OEM PackML Implementation Templates

Release 4, Version 1.0

Content

A% AUTOMATION, INC.

A) (o e [V 4o 3 TSP PRSP 1
2 PackML Template System HardWare ArChit@CIUIEcccuiiiiiiie ettt e e e e e et e e e e nte e e e sareeeesntseeesnnaeeeenneeeas 1
3 Mitsubishi PackML Template Project StrUCtUrEe OVEIVIEWccccviieeiiiieeiiieeeeiieeeeeteeeesareeestaeeesneaeeessseeeesnsseessnseessssseeens 1
4 Mitsubishi PACKIMIL TEMPIALE PrOJECT c.eeieeiiiiiiee ettt ettt e e e e ettt e e e e e e e e ebbea e e e e e e seetaaaeeeeaeeeasatsaseaeeseaassssaaeeaasesnnnses 2
4.1 [aTi A | oY ={ =10 0 T Y oI UUPUUPPRRNS 3
4.2 Yot [o I o o (= [AT LY/ < L= PPPPPPPPPPRE 3
4.3 (O L a1 == o T 1Y/ o1 SRR 4
S 1ol QY I €] o] o o W -] =] OO PR PRSP 4
5.1 (2= Yol 1Y/ I = TG o U USRS 4
5.1.1. PaCKMLFB STrUCLUIEd Data Ty PE...ueeeicueieeeeiieeeeeiteee ettt e e ette e e etteeeesateeeestteeesasaeesssaeaesnsseseansseessssaeeasnsseesannseeesnnsens 4
5.2 OEM_Template _PacKML_LAbEIS.......ouooi ittt e e e e e et e e e e e e e e et ba e e e e e e e senaataeeeeeesennnrannens 6
5.2.1. PackML_Module_Cmd Structured Data TYPe......uuuiie i eeiiiiiiee ettt e e e eeectt e e e e e e e e tbe e e e e e e eesnbbaaeeeeeeesnsraseeeaaenan 7
5.3 OEM_Template PaCKIML _GOT _KBYS...iiiiiiiiiiiiiieeeeeeeeiiteee e e e eeeittee e e e e seesabbaseeaeeeesasbaaaeeaaeeesanssaaseasassaassssaseaessenannssenes 8
5.4 OEM_Template _EVENT _LADEISeeieiieeiieeeeee ettt e e e e e e e e e e e e e e e e abbaaeeeeaesennaatbeeeaeesennnraaneas 9
5.5 OEM _TempPlate_EVENT_GOT _KBYSiiiiccireeeiciiieeeitteeeeeieeeesteeeestteeessseseesssseeeassaeeeasssasessssessasssssesassssesssseseasssssennnsees 10
6 PackML Template Project Program Organization UNITS........cccceeiiuieeeeiiieeciiie e eieeeeeee e e stee e st e e e sta e e e sneeeesnseeesnnsneesnnnnns 10
6.1 INTEIANIZATION POU.. ..ottt et st st e r ettt e se e s b e b e e r e e anesanesaeesreesnee st emneemnesneenneens 10
6.1.1. Equipment Module PackML INitialization POUSccocciiiiiiie ettt e e e et e e e e e e e sabaa e e e e e e e e anaaeeeaaeean 10
6.1.2. Unit Machine PackML INitialization POUS........coouiiiiiiiiieiiectte ettt sttt st e s e 11
6.2 Unit Maching LEVEI POU @Nd FBScc.uiiiiiiiiieiiieeiie ettt sttt ettt st sttt e st e s be e sabeesabeesabeesneesaneenas 12
07000 L U 1V V. Yo 12
6.2.2. PACKIMIL_IMAIN_FB....iiiiiiiiiierieeeet ettt sttt ettt ettt b ettt st e s st e sb e e s bt e bt ea et e s e s e e s r e e r e e neeanesanes 12
6.2.3. UM _LINECOMME_FB ..o s 13
T A S U 11V I A=Y o o o o I o > TSRS 13
6.3 Equipment Module LeVEl POU @Nd FBS.........uiiicuiieeiiiieeeciteeesteeeetteeeestreessaeeeesssteeessssseesasssesasssesesssssessssssseesnsseees 13
[0 0t PR =11 Qi 1V - 11 o 13
6.3.2. EMXX_CIMINN_ROULINE_FB ... e anann 13
L T0 T 1|V, o G e V7= oY { @eT oY d o] I = TP PPRR 13
6.3.4. EMXX_PACKML_CMA_SUM....tiiiiiiiiieeiieeectee et e e ettt e et e e e ettt e e e esteeessseeeeansaeeeasssaeesssseeeannsseeeansaeeesnsseeeannsseessnnens 13
7 PLC CPU Parameters @nd SETEINESuoeiiiiiiiieiiieeicieeeestt s eetee e et e e et e e e s ta e e e sstteeeesntaeessssaaeeassseeeennsaeeeansaneesnsseeeassseesnnsens 14
7.1 MEMOIY/DEVICE SELLING ...veeivieiiieiiieeciee et e et e st e st e s rte e s teesteesbee s beesabeesbaesabessasaesaseesnsaesasessataesnsessnsaesnsessnseesnsesans 14
7.2 DBVICE SO NS i e e e e e e e e 14
7.3 BUIIE IN ELTNEINEE POIt SETEING ..eveeiiieiieeiee ettt e e e e e et e e e e e e e e abbaeeeeeeeesantaaaeaaeeeasnsasaeaaaeeannnses 14
¢ MITSUBISHI ELECTRIC Part 6 -1 Engineering Group

Revision History

Version

Revision Date

Description

R4 V1.0

January 31, 2016

Initial release of PackML OEM Implementation Templates Release 4

@ MITSUBISHI ELECTRIC
&% AUTOMATION, INC.

Part 6 i Engineering Group

Mitsubishi PackML Implementation Templates — Release 4
Part 6: OEM PackML Template Program Structure and Implementation

1 Introduction

This document describes the program structure of the PackML Implementation Template project, the functions and
implementation details of each program, and how an OEM can tailor the template routines that are included in the
template project to conform to the actual mechanical systems.

Release 4 of the Mitsubishi PackML OEM Implementation Templates also includes the function blocks that handle events of
a unit machine.

This project structure is based on PackML Implementation Guidelines released by the OMAC Users Group and follows the
ISA-88 Make2Pack modularization concept.

2 PackML Template System Hardware Architecture

The PackML templates are designed to run on a system with the minimum of a RO8CPU and a GT27 HMI. The system
architecture used to create the Mitsubishi PackML is shown in the following block diagram. The PLC is a RO8CPU and the
GOT is a GT27 with the resolution of 800 x 600.

Because of the large number of tags required to support the PackTags specification, an extended memory card may be
required to be installed in the RO8CPU.

Ethernet Network Switch

Channel 1
RO8CPU
Programming PC GT27 (800x600) 192.168.3.39
192.168.3.199 192.168.3.18
QR System

Figure 1 — Mitsubishi PackML Template System

The programming laptop is where the iQ Works is executed. The laptop is connected to the GOT and the PLC CPU using the
Ethernet connections to download screen information and PLC project.

The configurations of these components are described in more details in other parts of the Mitsubishi PackML
Implementation Users Guide.

3 Mitsubishi PackML Template Project Structure Overview

The Mitsubishi PackML Template Project provides a pre-defined project structure that can be used by an OEM to
implement the control programs for a machine. The project is structured with the hierarchy of Project -> Program Files - >
Program Block or Program Organization Unit (POU).

Figure 2 below shows the overall organization of the PackML Template Project:
e The Project “PackML Template GXW3 R4 V2 FB” contains many Program Files.

0 Program File “Mainlnit” contains the POUs necessary to initialize the unit machine and all the equipment
modules (designated as EM0O to Emxx) of the unit machine. The number of Equipment Module required
for the Unit Machine depends on the actual mechanical design of the machine and the logical division of
the machine.

Q MITSUBISHI ELECTRIC Part 6 - Page 1 Custom Solutions Center
A% AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — Release 4
Part 6: OEM PackML Template Program Structure and Implementation

e The Program File UnitMach contains all the necessary Program Blocks at the Unit Machine level. The PackML state
and mode transitions occur at the Unit Machine level so that the PackML core function blocks are used only in the
Unit_Machine level.

e Each Equipment Module of the Unit Machine has its own Program File and associated program blocks. The number
of Program Files required depends on the number of the Equipment Module. Each Equipment Module can have as
many Control Modules as necessary to perform the control functions of the Equipment Module.

0 The Mitsubishi PackML Template Project assigns each Equipment Module a main program block. The main
program block will call the Event_Control function block (FB), and an Equipment Module PackML
Command and Status Summation FB together with as many control module FBs as necessary to control
the actual equipment.

Program File:Main Init

Program Block (POU)
PackML_UnitMachine_Setup

Program Block (POU)
EMOO_Init

Program Block (POU)
EMO1_Init

Program Block (POU)
EMxx_Init

Program File: UnitMach

Program Block (POU)
UM_Main

Program File: EMOO

Program Block (POU)
EMO00_Main

Program File: EMO1

Program Block (POU)
EMO01_Main

Program File: EMOO

Program Block (POU)
EMxx_Main

Function Block
PackML_Main_FB

Function Block
EMOO0_CMOO_EventControl_FB

Function Block
EMO01_CMOO_EventControl_FB

Function Block
EMxx_CMO0O_EventControl_FB

Function Block
UM_LineComm_FB

Function Block
EMO0_CMO1_Routine_FB

Function Block
EMO01_CMO1_Routine_FB

Function Block
EMxx_CMO01_Routine_FB

Function Block
UM_EventControl_FB

Function Block

EMO0_CMO2_Routine_FB

Function Block
EMO1_CMO02_Routine_FB

Function Block
EMxx_CMO02_Routine_FB

Function Block
EMOO_CMnn_Routine_FB

Function Block
EMO1_CMnn_Routine_FB

Function Block
EMxx_CMnn_Routine_FB

Function Block
EMOO0_PackML_Cmd_Sum_FB

Function Block
EMO1_PackML_Cmd_Sum_FB

Function Block
EMxx_PackML_Cmd_Sum_FB

Figure 2 — The Overall Structure of the PackML Template Project

4 Mitsubishi PackML Template Project

The actual Mitsubishi PackML Template Project contains the structure to support a Unit Machine with two Equipment
Modules (EM) and five Control Module (CM) Function Blocks in each EM (including one CM FB for event control and one for
PackML command and status summation) within each Equipment Module.

The structure can be easily expanded to match the actual Unit Machine structure. For example, if the actual machine has
three Equipment Modules instead of two, the OEM can duplicate the complete Program File EMOO and modify the all
names (such as Program File Name, Task Name, Control Module Names, etc.) and labels referenced in the new equipment
module from EMOO to EM02. An example is given in Section Error! Reference source not found. of this document.

Figure 3 shows the actual project structure in GX Works 3. After all Program Organization Units (POU) are created, they are
registered in the proper program setting areas.

Part 6 —Page 2

0 MITSUBISHI ELECTRIC Custom Solutions Center

AV AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — Release 4
Part 6: OEM PackML Template Program Structure and Implementation

EI Module Configuration

= i Program

nitial
I Mainlnit
& @ PackML_UnitMachine_Se
m % EMOO0_Init
m i EMO1_Init
= %t Scan
= £ UnitMach
= 1 UM_Main
= Local Label
 WorkSheet
= 5 EMOO
= @ EMO0_Main
= Local Label
£ WorkSheet
= 5 EMO1
= @ EMO01_Main
= Local Label
£ WorkSheet
1 Fixed Scan
[H
il Standby
= i No Execution Type
8 Unregistered Program
| & FB/FUN

Figure 3 — Project Structure of PackML Implementation Template

4.1 Initial Program Type

Programs registered as Initial Program Type will only be executed during the first scan of the PLC after it is first
powered up or reset.

The Initial Program type contains the Program File Mainlnit with the POU EMOO_Init which has the actual program
routine initializing the Equipment Module EMOO and local variables associated with the routine; POU EMO1_Init which
has the actual program routine initializing the Equipment Module EMO01 and local variables associated with the routine;
and POU PackML_UnitMachine_Setup which has the actual program routine initializing the Unit Machine with proper
PackML modes and states and the local variables associated with the routines.

4.2 Scan Program Type

Most the program files are registered as Scan Program type that will be executed on every scan of the PLC. The PackML
template contains Program files for a machine with two Equipment Modules.

e The UniMach Program File contains one POU: UM_Main. Function blocks PackML_Main_FB,
UM_LineComm_FB, and UM_EventControl_FB are called within the UM_Main.

e The EMOO Program File contains one POU: EMOO_Main. Function blocks EM00_CMO0O0_EventControl_FB,
EMOO_CMO1_Routine_FB, EMOO_CMO02_Routine_FB, EMOO_CMO03_Routine_FB, and
EMOO_PackML_Cmd_Sum_FB are executed within EM00_Main.

0 MITSUBISHI ELECTRIC Part 6 - Page 3 Custom Solutions Center
A7 AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — Release 4
Part 6: OEM PackML Template Program Structure and Implementation

5

e The EMO1 Program File contains one POU: EMO1_Main. Function blocks EM01_CMO0O0_EventControl_FB,
EMO1_CMO1_Routine_FB, EMO1_CMO02_Routine_FB, EMO01_CMO3_Routine_FB, and
EMO1_PackML_Cmd_Sum_FB are executed within EM01_Main.

4.3 Other Program Types
The PackML Template project does not use the Standby, Fixed Scan, and No Execution Program Types.

PackML Global Labels

This section contains the detailed descriptions of the global labels used in the PackML Implementation Template project.
There are five groups of Global Labels used in the PackML Template Project. The groups PackTags_Adm,
PackTags_Command, and PackTags_Status are labels related to PackTags that are described in Part 3 of the Users Guide
and will not be described in this document.

5.1 PackML_FB Group

This group contains global labels that are critical to the operation of PackML Core function blocks. The Structured Data
Types PackMLFB is defined to support the core PackML FB operations.

Variable Label Data Type Description

These are the configuration variables that OEM programs need to define at
which states where mode transitions are allowed for each mode. For
example, PackML_cfgModeTransitions[1, 2] = 1 means at Mode 1
gvba_PackML_cfgModeTransitions Bit(0..31,0..17) (“Producing” mode) State 2 (“Stopped”) state, the machine is allow to
switch mode. However, PackML_cfgModeTransitions[2, 2] should also be
set to 1 to allow the mode change from Mode 1 to Mode 2. Otherwise, the
mode change from 1 to 2 is not allowed.

These are the configuration variables that OEM programs need to define at
which states are not enabled for each mode. For example,
gvba_PackML_cfgDisableStates Bit(0..31,0..17) PackML_cfgModeTransitions[2, 5] = 1 means at Mode 2 (“Maintenance”
mode) State 5 (“Suspended”) state is not configured as a part of the state
model for Mode 2.

These are the configuration variables that OEM programs need to

gvsa_PackML_ModeNames String(32)(0..31) configure all the names of the modes in the machine.

Sungajo.z) | [e e conurton s tat 0641 rogams e
gvb_TimeRollOverWarning Bit This bit is on when any of the Mode or State timers roll over its limit.
gvs_Sta_StateCurrentName String(32) This is a status variable where the name of the current state is stored.
gvs_Sta_UnitModeCurrentName String(32) This is a status variable where the name of the current mode is stored.
gvb_PackML_ResetAllTimes Bit This bit is used to reset all mode and state timers of the unit machine
gvb_PackML_ResetCurrentModeTimes Bit This bit is used to reset all mode timers of the unit machine

These are the labels of PackML commands and status used to interact with
svst_PackML PackMLFB the ModeStateManager function block. The PackMLFB Structured Data
Type is detailed below.

5.1.1. PackMLFB Structured Data Type

This structured data type contains key elements to support the operation of the PackML_ModeStateManager
Function Block.

Variable Label Data Type | Description

The overall PackML label that contains various values and parameters for

PackML PackMLFB .
the machine states and modes

0 MITSUBISHI ELECTRIC Part 6 - Page 4 Custom Solutions Center

A% AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — Release 4
Part 6: OEM PackML Template Program Structure and Implementation

Variable Label Data Type | Description

When OEM machine programs require the machine to be in a certain
mode, this label should be set to the desired value of the mode. For
example, when PackML.CmdMode is set to “1” the machine is intended to
Double be in the “Producing” mode.

Word Per PackML specification, the Mode Numbers 1, 2 and 3 are defined as
“Producing”, “Maintenance” and “Manual” respectively. User Define
Modes can be from Model 16 and above. Mode Numbers 4 through 15 are
reserved for future use.

b_CmdMode

When OEM machine programs receive a “Reset” command, this bit should
b_CmdReset Bit be set by the programs. It should be cleared by the OEM machine
programs when the “Reset” command is no longer valid.

When OEM machine programs receive a “Start” command, this bit should
b_CmdStart Bit be set by the programs. It should be cleared by the OEM machine
programs when the “Start” command is no longer valid.

When OEM machine programs receive a “Stop” command, this bit should
b_CmdStop Bit be set by the programs. It should be cleared by the OEM machine
programs when the “Stop” command is no longer valid.

When OEM machine programs receive a “Hold” command, this bit should
b_CmdHold Bit be set by the programs. It should be cleared by the OEM machine
programs when the “Hold” command is no longer valid.

When OEM machine programs receive a “UnHold” command, this bit
b_CmdUnhold Bit should be set by the programs. It should be cleared by the OEM machine
programs when the “UnHold” command is no longer valid.

When OEM machine programs receive a “Suspend” command, this bit
b_CmdSuspend Bit should be set by the programs. It should be cleared by the OEM machine
programs when the “Suspend” command is no longer valid.

When OEM machine programs receive a “UnSuspend” command, this bit
b_CmdUnsuspend Bit should be set by the programs. It should be cleared by the OEM machine
programs when the “UnSuspend” command is no longer valid.

When OEM machine programs receive a “Abort” command, this bit should
b_CmdAbort Bit be set by the programs. It should be cleared by the OEM machine
programs when the “Abort” command is no longer valid.

When OEM machine programs receive a “Clear” command, this bit should
b_CmdClear Bit be set by the programs. It should be cleared by the OEM machine
programs when the “Reset” command is no longer valid.

When OEM machine programs receive a “State Complete” command, this
bit should be set by the programs. It should be cleared by the OEM

b_CmdStateComplete Bit machine programs when the “State Complete” command is no longer
valid.
. When OEM machine programs allow mode and state change commands
b_cfg_RemoteCmdEnable Bit to be issued remotely, this bit should be set
Double This label contains the Remote Mode Command value and is the value of
d_Inp_RemoteModeCmd Word the new mode the machine should transition to. The valid values are 0 —

31.

When OEM machine programs request a remote mode change command,

b_Inp_RemoteModeCmdChangeRequest | Bit this bit should be set

0 MITSUBISHI ELECTRIC Part 6 - Page 5 Custom Solutions Center
A% AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — Release 4
Part 6: OEM PackML Template Program Structure and Implementation

Variable Label Data Type | Description
This label contains the Remote State Command value and is the value of
the new state the machine should transition to. The valid State Command
values are defined as follows and others are ignored:
1: Reset
2: Start
3: Stop
Double
d_Inp_RemoteStateCmd Word 4: Hold
5: UnHold
6: Suspend
7: UnSuspend
8: Abort
9: Clear
b_Inp_ RemoteStateCmdChangeRequest Bit W.hen. OEM machine programs request a remote state change command,
this bit should be set.
b_StateClearing Bit This is a status bit. When it is set, the machine is in “Clearing” mode.
b_StateStopped Bit This is a status bit. When it is set, the machine is in “Stopped” mode.
b_StateStarting Bit This is a status bit. When it is set, the machine is in “Starting” mode.
b_Stateldle Bit This is a status bit. When it is set, the machine is in “Idle” mode.
b_StateSuspended Bit This is a status bit. When it is set, the machine is in “Suspended” mode.
b_StateExecute Bit This is a status bit. When it is set, the machine is in “Execute” mode.
b_StateStopping Bit This is a status bit. When it is set, the machine is in “Stopping” mode.
b_StateAborting Bit This is a status bit. When it is set, the machine is in “Aborting” mode.
b_StateAborted Bit This is a status bit. When it is set, the machine is in “Aborted” mode.
b_StateHolding Bit This is a status bit. When it is set, the machine is in “Holding” mode.
b_StateHeld Bit This is a status bit. When it is set, the machine is in “Held” mode.
b_StateUnHolding Bit This is a status bit. When it is set, the machine is in “UnHolding” mode.
b_StateSuspending Bit This is a status bit. When it is set, the machine is in “Suspending” mode.
b_StateUnSuspending Bit This is a status bit. When it is set, the machine is in “UnSuspending” mode.
b_StateResetting Bit This is a status bit. When it is set, the machine is in “Resetting” mode.
b_StateCompleting Bit This is a status bit. When it is set, the machine is in “Completing” mode.
b_StateComplete Bit This is a status bit. When it is set, the machine is in “Complete” mode.
b_ModeChangeNotAllowed Bit This is a status bit. When it is set, the mode change of the machine is not
allowed.
Double) .
d_Sts_StateCurrent Word This label shows the current state of the machine.
This array label shows the current bit of the machine mode. It can be used
b_Sts_Modebits[0..31] Bit to as test conditions for machine programs. For example, when bit #2 of
the Sts_ModeBits is set, the State Machine is in the Maintenance mode.
d Sts ModeCurrent Double This label shows the current mode of the machine. The values are as
- - Word defined in the CmdMode label of this table.

5.2 OEM_Template_PackML_Labels

This group contains global labels that are used by Unit Machine and Equipment Modules to operate PackML states and
commands. The Structure Data Type PackM_Module_Cmd is defined to support the operations.

Part 6 —Page 6

0 MITSUBISHI ELECTRIC Custom Solutions Center

A% AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — Release 4
Part 6: OEM PackML Template Program Structure and Implementation

Label Data Type Description

The label indicating the PackML commands and status of Equipment Module
gvst_EMOO_PackML_Sts PackML_Module_Cmd EMOO (which is the aggregate of all the Control Modules within the Equipment
Module)

The label indicating the PackML commands and status of Equipment Module
gvst_EMO1_PackML_Sts PackML_Module_Cmd EMO1 (which is the aggregate of all the Control Modules within the Equipment
Module)

The label indicating the PackML commands and status of the Unit Machine

gvst_UN_PackML_Sts PackML_Module_Cmd (which is the aggregate of all Equipment Modules)

The label indicating the PackML commands and status of Control Module

gvst_EMO00_CMO0O0_PackML_Sts PackML_Module_Cmd EMO0O_CMO0

The label indicating the PackML commands and status of Control Module

gvst_EMO0_CMO01_PackML_Sts PackML_Module_Cmd EMO00_CMO1

The label indicating the PackML commands and status of Control Module

gvst_EMO00_CMO02_PackML_Sts PackML_Module_Cmd EMOO_CMO02

The label indicating the PackML commands and status of Control Module

gvst_EMO00_CMO03_PackML_Sts PackML_Module_Cmd EMO00_CMO03

The label indicating the PackML commands and status of Control Module

gvst_EMO01_CMO0O0_PackML_Sts PackML_Module_Cmd EMO1_CMO0

The label indicating the PackML commands and status of Control Module

gvst_EMO01_CMO1_PackML_Sts PackML_Module_Cmd EMO1_CMO1

The label indicating the PackML commands and status of Control Module

gvst_EMO1_CMO02_PackML_Sts PackML_Module_Cmd EMO1_CMO2

The label indicating the PackML commands and status of Control Module

gvst_EMO01_CMO03_PackML_Sts PackML_Module_Cmd EMO1_CMO03

The command that comes from external to the machine to reset all the timers

gvb_RemoteCmd_ResetAllTimes Bit within the PackML State Machine of this Unit Machine.

5.2.1. PackML_Module_Cmd Structured Data Type

This structured data type is used by each Equipment or Control Module to issue PackML commands as well as
reflects its PackML state status.

Label Data Type Description
. When the bit is set TRUE, the Control Module is issuing a “Reset” command to the
b_Cmd_Reset Bit -
- - State Machine.
b_Sts_Resetting_SC Bit YVhen Resettlng" state operations are compl.eted, this bit is should be set to send a
State Complete” command to the State Machine.
. When the bit is set TRUE, the Control Module is issuing a “Start” command to the State
b_Cmd_Start Bit .
- - Machine.
. . When “Starting” state operations are completed, this bit is should be set to send a
b_Sts_starting_SC Bit “State Complete” command to the State Machine.
. When the bit is set TRUE, the Control Module is issuing a “Stop” command to the State
b_Cmd_Stop Bit .
Machine.
. . When “Stopping” state operations are completed, this bit is should be set to send a
b_Sts_Stopping_SC Bit “State Complete” command to the State Machine.
. When the bit is set TRUE, the Control Module is issuing a “Hold” command to the State
b_Cmd_Hold Bit .
Machine.
. . When “Holding” state operations are completed, this bit is should be set to send a
b_Sts_Holding_SC Bit “State Complete” command to the State Machine.
b_Cmd_UnHold Bit When the I?It is set TRUE, the Control Module is issuing an “Unhold” command to the
State Machine.
@ MITSUBISHI ELECTRIC Part 6 — Page 7 Custom Solutions Center

A% AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — Release 4
Part 6: OEM PackML Template Program Structure and Implementation

Label Data Type Description
. . When “UnHolding” state operations are completed, this bit is should be set to send a
b_Sts_UnHolding_SC Bit “State Complete” command to the State Machine.
b_Cmd_Suspend Bit When the I?It is set TRUE, the Control Module is issuing a “Suspend” command to the
State Machine.
. . When “Suspending” state operations are completed, this bit is should be set to send a
b_Sts_Suspending_SC Bit “State Complete” command to the State Machine.
b_Cmd_UnSuspend Bit When the bit |s. set TRUE, the Control Module is issuing a “UnSuspend” command to
the State Machine.
. . When “UnSuspending” state operations are completed, this bit is should be set to
b_Sts_UnSuspending_SC Bit send a “State Complete” command to the State Machine.
b cmd Abort Bit When the trut is set TRUE, the Control Module is issuing an “Abort” command to the
- - State Machine.
. . When “Aborting” state operations are completed, this bit is should be set to send a
b_Sts_Aborting_SC Bit “State Complete” command to the State Machine.
) When the bit is set TRUE, the Control Module is issuing a “Clear” command to the
b_Cmd_Clear Bit)
- - State Machine.
. . When “Clearing” state operations are completed, this bit is should be set to send a
b_Sts_Clearing_SC Bit “State Complete” command to the State Machine.
) When “Execute” state operations are completed, this bit is should be set to send a
b_Sts_Execute_SC Bit “State Complete” command to the State Machine.
. . When “Completing” state operations are completed, this bit is should be set to send a
b_Sts_Completing_SC Bit “State Complete” command to the State Machine.
b_ONS Bit The internal flag bit that is used for an one-shot Function Block
b_ModuleActive Bit When this bit is set, it indicates that the control module is active

5.3 OEM_Template_PackML_GOT_Keys

This group of global labels is defined in the template to support the User Interface Screens that are parts of the PackML
template. The user interface screens are implemented in the Mitsubishi GT-16 GOT hardware. These screens can be
easily modified and used by the actual OEM machine control project. The descriptions of GOT screens and GT Designer
projects are documented in Part 7 of the Users Guide.

The GOT interface programs of the PackML Template Project are implemented as Control Module CMO01 of Equipment
Module 00 as examples. The user can implement any operator interface routines in other control modules when
appropriate.

Label Data Type Description
svb_GOT_ProdMode Bit Reflecting the status of “Produce Mode” key on the GOT
svb_GOT_MaintMode Bit Reflecting the status of “Maintenance Mode” key on the GOT
svb_GOT_ManualMode Bit Reflecting the status of “Manual Mode” key on the GOT
svb_GOT_UserlMode Bit Reflecting the status of “User Mode 1” key on the GOT
svb_GOT_User2Mode Bit Reflecting the status of “User Mode 2” key on the GOT
svb_GOT_ResetKey Bit Reflecting the status of “Reset Command” key on the GOT
svb_GOT_StartKey Bit Reflecting the status of “Start Command” key on the GOT
svb_GOT_HoldKey Bit Reflecting the status of “Hold Command” key on the GOT
svb_GOT_StopKey Bit Reflecting the status of “Stop Command” key on the GOT
svb_GOT_UnHoldKey Bit Reflecting the status of “UnHold Command” key on the GOT
svb_GOT_AbortKey Bit Reflecting the status of “Abort Command” key on the GOT
§ MITSUBISHI ELECTRIC Part 6 -Page 8 Custom Solutions Center

A% AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — Release 4
Part 6: OEM PackML Template Program Structure and Implementation

svb_GOT_ClearKey Bit Reflecting the status of “Clear Command” key on the GOT
svb_GOT_SuspendKey Bit Reflecting the status of “Suspend Command” key on the GOT
svb_GOT_UnSuspendKey Bit Reflecting the status of “UnSuspend Command” key on the GOT
svb_GOT_StateCompleteKey Bit Reflecting the status of “State Complete Command” key on the GOT
svb_GOT_ClearAllTimesKey Bit Reflecting the status of “Clear All Timers” key on the GOT
svb_GOT_ClearCurrModeTimeKey Bit Reflecting the status of “Clear Current Mode Timers” key on the GOT

svw_GOT_Screen_Switch

Word[Signed]

Label that is used to instruct the GOT which screen to display.

svda_GOT_CurrentStateTimes

Double
Words[signed](0..31,
0..17)

Contain the current time (in seconds) in the current state of a particular mode

svda_GOT_CumulativeStateTimes

Double
Words[signed](0..31,
0..17)

Contain the cumulated time (in seconds) of the state of a particular mode

svda_GOT_ModeCurrentTime

Double
Words[signed](0..31)

Contain the current time (in seconds) in the current mode

svda_GOT_ModeCumulativeTime

Double
Words|[signed](0..31)

Contain the cumulated time (in seconds) of the mode

svd_GOT_AccTimeSinceReset

Double
Words[signed]

Contain the cumulated time (in seconds) of the machine since the last reset timer
command was issued.

5.4 OEM_Template Event Labels

This group of global labels is defined in the template to support the event handling functions. The descriptions of the
Structured Data Types are documented in Part 5 of the Users Guide where Event Handling Function Blocks are

described.

Label

Data Type

Description

gvsta_AlarmCfg

SDT_EventCfg(0..19)

This array is used to define the information of alarms in the system such
as ID, Value, Alarm message, and Category.

gvst_ZeroEvent

SDT_Event

This structure is used to initialize any list of events.

gvst_AlarmStatus_EMOO

SDT_EventStatus

This structure contains the event status for Equipment Module 00

gvsta_AlarmStatus_Event_EMOO

SDT_Event(0..29)

This event list contains the events of Equipment Module 00. The array
size is pre-defined to 30.

gvst_AlarmStatus_FirstOut_EMO0

SDT_Event

This structure is used to hold the First Out Event of Equipment Module
00

gvsta_AlarmStatus_FirstOutCat_EMOO

SDT_Event(0..9)

This array of structures is used to hold the First Out Event of each event
category of Equipment Module 00

gvst_AlarmStatus_EMO1

SDT_EventStatus

This structure contains the event status for Equipment Module 01

gvsta_AlarmStatus_Event_EMO1

SDT_Event(0..29)

This event list contains the events of Equipment Module 01. The array
size is pre-defined to 30.

gvst_AlarmStatus_FirstOut_EMO1

SDT_Event

This structure is used to hold the First Out Event of Equipment Module
01

gvsta_AlarmStatus_FirstOutCat_EMO1

SDT_Event(0..9)

This array of structures is used to hold the First Out Event of each event
category of Equipment Module 01

gvst_AlarmSummation

SDT_EventSummation

This structure contains the Event Summation status of the Unit Machine

gvst_AlarmSummation_FirstOut

SDT_Event

This structure is used to hold the First Out Event of the Unit Machine

gvsta_AlarmSummation_FirstOutCat

SDT_Event(0..9)

This array of structures is used to hold the First Out Event of each event
category of the Unit Machine

gvsta_AlarmSummation_Events

SDT_Event(0..99)

This event list contains the events of Unit Machine. The array size is pre-
defined to 100.

‘ MITSUBISHI ELECTRIC

A% AUTOMATION, INC.

Part 6 - Page 9 Custom Solutions Center

Mitsubishi PackML Implementation Templates — Release 4
Part 6: OEM PackML Template Program Structure and Implementation

Label Data Type Description

gvsta_AlarmSortedList SDT_Event(0..399) This event list is used to sort the events of the Unit Machine.

5.5 OEM_Template_Event_GOT_Keys

This group of global labels is defined in the template to support the Event Handling Test Screen that is a part of the
PackML template. The Event Handling Test Screen is implemented in the Mitsubishi GT-16 GOT hardware. The screen
can be easily modified and used by the actual OEM machine control project. The descriptions of GOT screens and GT
Designer projects are documented in Part 7 of the Users Guide.

The Event Handling Test Screen programs of the PackML Template Project are implemented as Control Module CM02
of Equipment Module 00 and Control Module CMO02 of Equipment Module 01 as examples. The user can implement
any operator interface routines in other control modules when appropriate.

Label Data Type Description

svb_GOT_GuardDoorOpenKey1l Bit Bit to set or clear “Guard Door Open” error for EM01
svb_GOT_AbortKeyl Bit Bit to set or clear “Abort” error for EMO1
svb_GOT_LowMaterialKeyl Bit Bit to set or clear “Low Materials” error for EM01
svb_GOT_StopKeyl Bit Bit to set or clear “Stop” error for EMO01
svb_GOT_RemoteStopKey1l Bit Bit to set or clear “Remote Stop” error for EM01
svb_GOT_ESTOPKeyl Bit Bit to set or clear “E-Stop” error for EM01
svb_GOT_MGFaultkeyl Bit Bit to set or clear “Motion Group Fault” error for EM01
svb_GOT_GuardDoorOpenKey Bit Bit to set or clear “Guard Door Open” error for EMOO
svb_GOT_EventAbortKey Bit Bit to set or clear “Abort” error for EMOO
svb_GOT_LowMaterialKey Bit Bit to set or clear “Low Materials” error for EMOO
svb_GOT_EventStopKey Bit Bit to set or clear “Stop” error for EMOO
svb_GOT_RemoteStopKey Bit Bit to set or clear “Remote Stop” error for EMOO
svb_GOT_ESTOPKey Bit Bit to set or clear “E-Stop” error for EM0OO
svb_GOT_MGFaultKey Bit Bit to set or clear “Motion Group Fault” error for EMOO

6 PackML Template Project Program Organization Units
6.1 |Initialization POU

6.1.1. Equipment Module PackML Initialization POUs

EMOO_Init and EMO1_Init are two POUs that perform the initialization of PackML related labels only during the
first scan of the PLC. It is important to note that an OEM using this PackML Template Project will need to add the
necessary operation-related initialization code for each equipment module.

The EMOO_Init and EMO1_Init functions are identical except that labels corresponding to each equipment module
are initialized in their respective POU. Figure 4 shows the Structured Ladder code. The label with the
PackML_Module_Cmd Structured Data Type of each Control Module in the Equipment Module is input to the
Function Block PackML_Cmd_Sts_Init and all PackML commands and status are initialized to the default values.

0 MITSUBISHI ELECTRIC Part 6 - Page 10 Custom Solutions Center
A% AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — Release 4
Part 6: OEM PackML Template Program Structure and Implementation

vfb_PackML_Cmd_Sts_Init_1
PackML_Cmd_Sts_Init
EN ENO

[gvst EMOO_CMOO_PackML_Sts = FB_PackML_Cmd_Sts_Init j—————{ gvst EMO0_CMO00 PackML Sts |

2

vib_PackML_Cmd_Sts_lnit_2
PackML_Cmd_Sts_Init

EN ENO

[gvst EMOO_CMO1_PackML_Sts — FB_PackML_Cmd_Sts_Int ———— gvst EM00_CMO01_PackML_Sts
3 L))

vib_PackML_Cmd_Sts_Init_3
PackML_Cmd_Sts_Init
EN ENO

[gvst EMOO_CM02_PackML_Sts = FB_PackML_Cmd_Sts_Init ~ —————{ gvst EMO0_CMO02 PackML Sts]
5

6

b PackML_Cmd_Sts_Init_4
PackML_Cmd_Sts_Init

EN ENO

[gvst EMO0_CMO03_PackML_Sts — FB_PackML_Cmd_Sts_Int ———— gvst EM00_CMO03_PackML_Sts

7 8

Figure 4 — Equipment Module PackML Initialization

Figure 5 below shows the actual code of the PackML_Cmd_Sts_lInit function block. The initialization routine clears
all PackML commands and set the State Complete status for states that require StateComplete flags to transition.

B 7 =
—— = no e > = =
— 2 st inn o Bl e ML st s cra e & — MCLTE
— R + ——
— = no e > e e
2 —{ FE_FaciL_tma St inis_Cma_Had (FE_Pasdi_Ema_Sta_inite_End_unHald — Stz nits_Cma
I T - o
T
= S— iL_Cma_sts_ink o_Cra_tho S
T i '
B =
f——— = no e > e e
2 —{ FE_FackiiL_tnd_Sta_inis_Si_Ressting 85 & P2 Pzl Ema_Sia it Siine 52 & FE_Paciil_Smd_ti_ib_fx Sicsona 85
——— = o e > e e
4 (—{_FB_FaskiL_Emd_Siz ik S hodng 55 & e FE_Faciili Cme 83 s Su_Unneidng 50 @ ————{F& P2l Cmc St inth B Suspending 53
= = =
=T =
— L s s, s UnBusper o — ta_| W X afb— ook i, e, "
— T == = —T=7
—— = o e >
| 15 T 5 T NN

Figure 5 Function Block: PackML_Cmd_Sts_Init

6.1.2. Unit Machine PackML Initialization POUs

PackML_UnitMachine_SetUp is used to configure PackML modes and states for the Unit Machine and set up initial
alarm configurations and zero event parameters.

Q MITSUBISHI ELECTRIC Part 6 - Page 11 Custom Solutions Center
A% AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — Release 4
Part 6: OEM PackML Template Program Structure and Implementation

The structured ladder programs of this POU included in the PackML Template Project are used to configure the
modes and states for this template system only. This POU needs to be modified by the OEM to properly configure
his Unit Machine to represent the actual modes and states of the machine.

The functions of this POU include:
e Configuring names of all modes available in the Unit Machine,
0 i.e. populating global variable PackML_ModeNames[0..31]
e Configuring names of all states available in the Unit Machine,
0 i.e. populating global variable PackML_StateNames[0..31]
e Defining all states within each mode that mode transitions are allowed,
0 i.e. defining global variable PackML_cfgModeTransitions[0..31, 0..17]
e Defining all states that are not required in each mode,
0 i.e. defining global variable PackML_cfgDisableStates[0..31, 0..17]
e Defining the initial mode and state of the Unit Machine,
0 Inthe Template System, the Unit Machine is set to “Manual Mode” and “Stopped State”
e Selecting the GOT screen to be displayed based on the mode of the Unit Machine,
e Configuring event information for all events in the Unit Machine,

e Configuring event handling parameters for proper operation.

6.2 Unit Machine Level POU and FBs

It is recommended that a user should refer to the actual FBD code in the Mitsubishi PackML Implementation Template
project to get a better understanding of the functions of the POU and the FBs.

6.2.1. UM_Main

The purpose of this POU is to control the flow of the other routines at the Unit Machine level. It contains all the
calls to all other unit machine level POUs.

Since the Event Summation and Sorting functions do not have to be executed on every scan to save overall
machine scan time, a timer is programmed to call the UM_EventControl subroutine every second. A user can
modify this time period to make the system operate appropriately per application requirements.

6.2.2. PackML_Main_FB
This FB operates the PackML state machine and its functions include:
e Aggregating PackML commands and status of all equipment modules,

O If there are more than two equipment modules in the Unit Machine, this part of the template
routine needs to be modified to include commands and status from the additional equipment
modules

e Setting proper PackML command or status based on the aggregated results,

e Calling the PackML_ModeStateManager function block to set the PackML state machine in the correct
mode and state and then clearing the command and status

e Calling the PackML_ModeStateTimes function block to accumulate the time in the current mode and state.

Q MITSUBISHI ELECTRIC Part 6 - Page 12 Custom Solutions Center
A% AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — Release 4
Part 6: OEM PackML Template Program Structure and Implementation

6.2.3. UM_LineComm_FB

The purpose of this POU is to handle PackML commands external to the Unit Machine. The commands may come
from a Unit Machine downstream or Upstream. The current PackML Template project does not include the code to
handle remote command communication.

It is assumed that an external system uses the PackTags Cmd_UnitMode and Cmd_CntrlCmd to configure the
desired mode and command the Unit Machine needs to handle respectively. Then the remote machine can enable
the PackTags Cmd_UnitModeChangeRequest and Cmd_CmdChangeRequest to initiate the remote operations.

The code in this POU is simply to take the remote commands and enable the proper labels within the template
project and the PackML_Main POU will function accordingly.

6.2.4. UM_EventControl_FB

The purpose of this POU is to aggregate events and alarms from all equipment modules and handle them at the
Unit Machine level.

In the PackML Template, the events from Equipment Modules 00 and 01 are summed into an overall list
AlarmSummation at the Unit Machine level. The Event_Sort FB can then be used to perform filtering and sorting
functions on the list. The details of filtering and sorting functions are documented in Part 5 of the Users Guide.

6.3 Equipment Module Level POU and FBs

Programs of each Equipment Module are grouped in the Program File EMxx. In the Template Project, each equipment
module contains the main POU, an event control FB, three control module FBs, and a PackML Command Summation FB.
For an actual implementation, the OEM can add or subtract the control module FBs as appropriate.

6.3.1. EMxx_Main

The purpose of this POU is to control the flow of the other routines at the Equipment Module level. It contains all
the calls to all other equipment module level FBs.

6.3.2. EMxx_CMnn_Routine_FB

This POU contains the logic for Control Module nn of this particular equipment module xx. The OEM should
incorporate the appropriate control logic in this POU to perform the actual control functions. For an actual
implementation, the OEM can add or subtract control module POU’s as appropriate. The names of these POU’s can
also be modified to better reflect the actual control module functions, for example, instead of
EMO0O_CMO1_Routine, the POU can be named as Filling_Station_HMI_Interface.

In the Mitsubishi PackML Implementation Template project, EMO0_CMO01_Routine_FB contains the GOT interface
routine for PackML state and mode transitions. It takes the key pressed on the GOT and set or reset the proper
flags to drive the PackML state machine operations. EMOO_CMO02_Routine_FB and EMO01_CMO02_Routine_FB
contain the GOT interface routine for simulating events in the Unit Machine through GOT key presses.

6.3.3. EMxx_EventControl_FB

The purpose of this FB is to use the Event_Manager FB to aggregate events from all control modules into the
equipment module level. It also contains the logic to issue PackML Stop or Abort command depending on which
category of events have occurred.

This EventControl is referred to as Control Module 00 of the equipment module.

6.3.4. EMxx_PackML_Cmd_Sum

The purpose of this POU is to aggregate all PackML related commands and status from all control modules of this
particular equipment module.

& MITSUBISHI ELECTRIC Part 6 - Page 13 Custom Solutions Center
A% AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — Release 4
Part 6: OEM PackML Template Program Structure and Implementation

The consolidated command or status will then be used in the PackML_Main POU to set the command and status at
the Unit Machine level.

7 PLC CPU Parameters and Settings

This section contains some of the key PLC CPU parameter settings for the PackML Implementation Template project.

7.1 Memory/Device Setting

Because of the large number of PackTags and labels that are required to support the PackML and Event Handling
functions, it is important to allocate sufficient Device Area Capacity and label Area Capacity properly.

The capacity of the Device Area is set at 348K words but can be adjusted according to the application needs. This is
necessary to allocate PagTags to direct devices addresses so that they can be read or written by the OPC server. The
Kepware OPC server does not support direct Label Access capability at this time.

Item
Device/Labol Mamory Ao Selting
Extondod SRAM Cassefto Satting
Device/Lnbel Memory Area Capacity Setting
Device Ao

et Mountod

Device Arsa Copacity 348 K Word
Labad Arsa
Labed Aron Capacity 238 K Word
Latch Labd Arva Capacity 8K Word
File Stomge Area Copacity 0K Word
Device/Label Memary Configuration Confirmation «Cenfirmations

DovicLabel Mormory Ane Dotailed Setting

Dwice Setting <Dhetaied Selting>
Latch Type Setting of Latch Type Label Lateh (1)
Index Register Setting
Peants Sebting
Totnd Prints 24 Word
Index Regrster () 20 Points
Long Index Register (L2) 2Pt
Local Setting
Prints Setting
Local Index Register (Z) 0 Points
Loeal Long Index Regrster (LZ) 0 Ponts

Figure 6 — Device / Label Area Setting

7.2 Device Settings
The key settings on this screen are the allocated size for D registers (329K points) to allocation pre-defined PackTags in

D Registers.
= Sribol Device Local Device: Latch Latcn -
Powts Ronge Stan End Points (U] @
Input x 12K| O 2FFF
Outpul ¥ 12K 010 2FFF
Infgrnal Felay M 30 0o 30719 Mo Setting No Setting
Link Ry B &K 0w IFFF o Setting No Setting
Spociol Link Relay S8 Y
Annundiator F 002047 ng Mo Setting
Edg Rolay v T Sotting N Setting
Stop Rolay s 0
Tirnar T 1 0101023 NoSetting Mo Setting
Loag Timer LT 1 Do 1023
Retentive Timer ST]
Long Retentive Timer LST]
Counter c 512 D511
Leng Courder Lc £12 0511
Data Fegster (] 329K | 010336395
Link Regrster w 5 DI 13FF
Link Specinl Register SW 2 DI 7FF
Lokch Reloy L 3 Dlo@19 o Settng
Total Device 347.5K Word 0.0K Word
Total Word Duvice 342 5K Word 0.0K Word
Tots! Bit Duwice B0 0 Bt 0.0K B i

Figure 7 — PLC Parameters, Device Settings

7.3 Built In Ethernet Port Setting

The Built-In Ethernet port is configured so that it can be used with the Kepware OPC server to send PackTags data to
external systems. It is also used to communicate with the GOT in the system.

Part 6 —Page 14

0 MITSUBISHI ELECTRIC Custom Solutions Center

A% AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — Release 4
Part 6: OEM PackML Template Program Structure and Implementation

Port 20482 using TCP protocol is configured to communicate with the Kepware OPC server. Port 20481 using UDP

protocol is configured to communicate with the GOT.

Item
=] Own Node Settings
Parameter Setting Method

Communication Data Code
Opening Method

(=] External Device Configuration
External Device Configuration

Parameter Editor

= IP Address
IP Address 192.168. 3. 39
Subnet Mask 255255 255 0
Default Gateway -
Enable/Disable Online Change Disable All (SLMP)

Binary
Do Mot Cpen by Program

<Detailed Setting>

Figure 8 — PLC Parameters, Built-In Ethernet Port Settings

£} Ethermet Canfiguration (Built-in Ethernet Part) e —— e
, Etharmet Configuration Edit View Close with Discgrding the Setting Closa with Beflacting the Satting |
Distact Hiow
Commurication i e Re Toerke |~
No. Model Kame Protocol | Send/Recel
e Settng i Addvess Poet No. MAC Address
" m Host Staton | 192.168.3.39
& L SLMP Connection Module | SLMP TCP 192.168.3.39 20482
& 2 SLMP Connection Module ESI.MP uoe 152.168.3.39 20481
Bl | 3 MELSOFT Connecton Moduk [MELSORT Connecti Tcp 192,168,335
4 MELSOFT Connection Module MELSOFT Connectt TCp 162.166.3.50
= 5§ MELSOFT Connection Module ﬂil_‘DFI'CO'm TP 152.168.3.39
Bl | 6 MELSOFT Connecton Module |MELSOIT Connects TP 192,168,335
7 MELSOFT Connection Module |MELSOFT Connecti TCP 152,168,339
= 8 MELSOFT Connection HMJIQENELRJFI'CMM TCP 192.168.3.39
B | 9 MELSOIT Connection Module | MELSOFT Connect TCP 152.168.3.35
Rl 10 MELSOFT Connection Moduls [MELSOFT Connecte Top 192.1683.39 &
‘ i '
SIMPCo SUMPCo MELSOF MELSOF MELSOF MELSOF MELSOF MELSOF MELSOF SOF MEL3OF MELSOF [}
nnestion nnection TConnec TConnec TConnec TConnec TConmec TConme onnes T Connes 1)
=
I, |
| ; Outpat x|

Figure 9 — PLC Parameters, Built-In Ethernet Port External Settings

’ MITSUBISHI ELECTRIC

AV AUTOMATION, INC.

Part 6 — Page 15

Custom Solutions Center

. MITSUBISHI ELECTRIC
AW AUTOMATION, INC.

Engineering Group

Users Guide

OEM PackML Implementation Templates

Release 4, Version 1.0

1 INtroduction...coeeeceeenieciecceeeee e,
2 PackML Template System Architecture........
3 GOT Communication Channel Configuration
4

Sample SCreens.....cooevveveeeeeeecciieee e

Content

4.1 PACKIMIL IMIOT@ SCIEENS ..ottt ettt sttt sttt e st e et e st e et e s bt e e bt e s b e e e bt e s be e e bt e s b e e e bt e sabeeeaneesabeeeseesares
5 0t R o do o [T T V=41 |V, o o [BN Yol ¢ Y=Y o FA PP PUR
4.1.2. MainteNaANCE IMOUE SCrEEN....c..eeitiiiieitieitesteese ettt ettt e sttt e e s e bt e b e et e s e e saeesreesr e e st easteseesseesb e e neennesnnesanes
4.1.3. MaNUAl IMOTE SCIEEN ...ttt ettt sttt ettt e e e s b e bt e b e e et sae e saeesbeenr e e st et e e st e smee s b e e neeanesanesanes
4.1.4. User Defined Mode 1/ User Defined MOGE 2 SCIrEENccovvveuverieeeieeeeeieeeeeeeeeesaeeeeeeessesasreeeeessssssssessessssssssresees

4.2 Y=g =TSy Y o] =T =T T

@ MITSUBISHI ELECTRIC
&% AUTOMATION, INC.

Part 7-—i Custom Solutions Center

Revision History

Version

Revision Date

Description

R4 V1.0

January 31, 2016

Initial release of PackML OEM Implementation Templates Release 4

‘ MITSUBISHI ELECTRIC
A% AUTOMATION, INC.

Part 7 i Custom Solutions Center

Mitsubishi PackML Implementation Templates — Release 4
Part 7: GOT Screens

1 Introduction

This document describes the example screens that are used with the Mitsubishi PackML Implementation Template project.
Many of the screens and screen elements can be used by OEMs on actual operator screens for the machine. The GT
Designer 3 project for the example screens is a part of the Mitsubishi PackML Implementation Template package.

The use of iQ Works system labels is described in Part 2 of the Mitsubishi PackML Implementation Template Users Guide.

2 PackML Template System Architecture

The PackML templates are designed to run on a system with the minimum of a RO8CPU and a GT27 HMI. The system
architecture used to create the Mitsubishi PackML is shown in the following block diagram. The PLC is a RO8CPU and the
GOT is a GT27 with the resolution of 800 x 600.

Because of the large number of tags required to support the PackTags specification, an extended memory card may be
required to be installed in the ROSCPU.

Ethernet Network Switch

Channel 1
RO8CPU
Programming PC GT27 (800x600) 192.168.3.39
192.168.3.199 192.168.3.18
iQR System

Figure 1 — Mitsubishi PackML GXW3 Template System

The programming laptop is where the iQ Works is executed. The laptop is connected to the GOT and the PLC CPU using the
Ethernet connections to download screen information and PLC project.

The configurations of these components are described in more details in other parts of the Mitsubishi PackML
Implementation Users Guide.

3 GOT Communication Channel Configuration

The GOT in the Template system uses the Ethernet port to communicate with the programming laptop and an Ethernet
channel to communicate with the PLC.

When using iQ Works to define the system architecture, the communication channel between GOT and the PLC should have
already been set up.

In Figure 2 below, all parameters shown with the green background are defined in iQ Works and transferred over to the GT
Designer 3.

Q MITSUBISHI ELECTRIC Part7 - Page 1 Custom Solutions Center
A% AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — Release 4
Part 7: GOT Screens

8 Controler Settng

@ CHIMELSEC iR,
: ﬂim Manufacturer: {*1) [MITSUBISHI |
8 Ci:None Controler Type: (*1) [HEEISaES ML) =]
- ¢ha Network/ Dupiex S
¥ Roano o [oBberes e |
1 3@. conunica] AL [Standard LT (Ethemex) Mok =]
£ Gatenay Sur o [Ethemet{MELSEC), QL70NG, CRAD-700, Gatew, =
8 Gatevay Cie g::si;; I et | QLMNG, , ay -]
£3 Mal
T FTP Server [WWMMHIRMM.]
g Fie Transfer r
@, Q) Redundant |Popety Vale
 Staton No. St GOT Net No. (*1) 1
W Buffer Memary Un GOT Staton (*1) 3

GOT Standard Ethemet Settng (*1 192.168.1.18
GOT Communication Port No. (*1) 5001

Retry{Tmes) 3
Startup Time(Sec) 3
Tmeout Tme(5ec) 3
Deby Tme{ms) 0

Figure 2 — Communication Channel 1 Configuration

Set the channel 1 as the Host to the PLC.

Ethermet Setting
S K| Ty | B | (B

 Host det No. ("1 5tation (*1) Unt Type (*1) | IP Address (*1) | Port No. |“ommurnca
1|« 1 REPU 102.166.3.30 5006 uoP

(*1) The tems ndicated n green are set n MELSOFT Navigator.

Figure 3 — Setting Channel 1 as Host

And then select the Communication Setting to verify all parameters.

Standard Ethemel | Wireless LAr) Standard Ethemet + Wreless LAD

Standard Ethemet -

Standard 1jF{Ethernet):Mult{Usad n CH1) -

GOT Standard Ethemet Settng... | | 1P Fiter Setting...

Property Vakse

Figure 4 — Verifying Channel 1 Communication Settings

One should ensure the configurations are correct. If for whatever reasons the parameters do not match with the actual
system configuration, one can select Tools -> Options -> iQ Works Interaction tab as shown in Figure 5 and check the box to

MITSUBISHI ELECTRIC Part 7 - Page 2 Custom Solutions Center

AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — Release 4
Part 7: GOT Screens

enable editing of parameters set in MELSOFT Navigator. However, the best practice is to make the necessary changes in the
Navigator and “reflect” the parameters using the methods described in Part 2 of the Users Guide.

¢ r—

| omtsans -
||/ Opperation View } Defet Settng ¥ i3 Works Interacton |

Set the tems rebited to i) Works Interadtion,

Parameter

[Note] - There val be a mamatch n the setting of system configuration f parameters
set n MELSOFT Navigator are edied. Use the nteraction function wih MELSOFT
Mavigator after the mamatch & resolved by usng the reflection fundtion as wel as.
werfcation function,
- Parameters cannot be edted when the parameter reflecton
function 5 executed R MELSOFT Navgator.
Thes settng cannet be changed when the setting window of controlers & depiryed.

Systern Label Update/Check

| fustornaticaly perform there 5 a change in the referenced gystem lat
*Appicable at the tme of project open

¥ Display the confrmation dikg peior to the executior

[Mote] - Perform ths function after generating the routng information
when the system configuration 8 changed n MELSOFT Navigator.

Systemn Labed Ver.2

Input Assss Display Cobmn | Comment -

Figure 5 — Option to Modify Parameters Set in iQ Works

4 Sample Screens
Six sample screens, consisting of five PackML Mode Screens and one Event Test Screen, are included in the Template

project.

Each screen of PackML Mode Screens displays the state machine of the mode and the accumulated and current time values
for the mode and states. Keys are provided for the user to change modes, reset timers, and issue PackML commands. The
state machine will display the transition of the states and highlight the state the state machine is in. The Event Test Screen
has total of 14 keys that generate simulated events in the Template system. The details of this screen are described in this
section.

Elements on these screens can be copied and used on other screens created by OEMs.

4.1 PackML Mode Screens

The PackML Mode Screens are used to demonstrate the PackML state and mode transition functions and display timer
values PackML states and modes.

The functions of these screens are documented below:

e This screen of a particular mode displays the state diagram of the mode and the active state is highlighted and
shown in Current Machine State display box.

e The Current Machine Mode is shown in the “Current Machine Mode” display box

e The Mode keys at the bottom of the screen allows the Unit Machine to change Mode and the screen of the
new mode will be displayed. If the Unit Machine is at a state that mode change is not allowed, the “Mode
Change Not Allowed” lamp will be lit.

e All timer values valid for the particular mode are displayed. Reset Current Mode Times and Rest All Times keys
will reset the proper timers accordingly.

e The PackML Command Keys simulate commands to the State Machine and will cause state transition

‘ MITSUBISHI ELECTRIC Part7 - Page 3 Custom Solutions Center
A% AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — Release 4

Part 7: GOT Screens

4.1.1. Producing Mode Screen

ot SR

Gt

Machine Mode

ABCDEFGH ! JKL

Slate un
Ahm CUmp Suspenu
e

Clearing

Stopped

Suspended

ur
UM

Stopping

UM
Abarting

ur

UM

Aborted
Prod Maint Manual User 2 ':‘ﬁ]s:;)
Mode Made Mode Mode " LK
Times

) Cummulative Current Time Since
Machine State Res‘el HUId Unhu\d C\Ear Susnend Mode Time Mode Time Last Reset
ABCDEFGH | JKL 123456 123456 123456

Holding

Unsuspendi
Cur

Complete
cur

Figure 6 — Producing Mode Screen

4.1.2. Maintenance Mode Screen

ot SR

Gt

Machine Mode

ABCDEFGH I JKL

’7 ’7
Comp.
e
r-:m

Unholding

Starting | I

Execute

Machine State Cummulative Current Time Since
Resel Huld Unhu\d C\Ear Lty Vil Mode Time | Last Reset
ABCDEFGHI JKL 123456 123456 123456

Stopped

Starting

Clearing H
ur Cur
UM cum

Held
Cur
CuM
Unhol
Cur

Resetting
Cur
cum
Stopping
ur
UM
Aborting
ur
UM
Aborted
Prod Maint Manual User 2 ':‘ﬁ]s:;)
Mode Made Mode Mode " LK
Times

Figure 7 — Maintenance Mode Screen

4.1.3. Manual Mode Screen

The Manual Mode Screen has an additional key “Go To Event Test Screen” which allows the Event Simulation
screen to be displayed and events being generated.

Part 7—Page 4

0 MITSUBISHI ELECTRIC Custom Solutions Center

AV AUTOMATION, INC.

Mitsubishi PackML Implementation Templates — Release 4

Part 7: GOT Screens

e MTSUBISH
ELECTRIC

i?

Machine State
ABCDEFGHIJKL

Cummulative
Mode Time

123456 I

Current
Mode Time

Time Since
Last Reset

123456

23456

Comp.

Machine Mode
ABCDEFGHI KL

et

Idlle Starting | I Execute

=
S v clemr
Stopping Clearing Ahorted I Ahorting I

Reset
All
Times

Reset
Mode
Times

Prod Maint Manual User 1 User 2
Mode Mode Mode Mode Mode

Clearing

Stopped

Starting

Stopping
ur
UM
Aborting
ur
UM
Aborted
ur
UM

Resetting

Event
Test

B

Figure 8 — Manual Mode Screen

4.1.4. User Defined Mode 1 / User Defined Mode 2 Screen

e SIS
ELECTRIC

i?

Machine State
ABCDEFGHIJKL

Reset

Holet

Unhiled

Clear

Machine Mode
ABCDEFGHI KL

Exacute

Stopped

Maint Manual User 1 User 2
Mode Mode Mode Mode

Suspend

Cummulative
Mode Time

123456

Current
Mode Time

123456

Time Since
Last Reset

123456

ur

Stopped

Suspended

2
E

Stopping

Aborting

Aborted

Holding

Suspending
cur
cum

Unsuspending
cur
cum

Resetting

cur
cum

Figure 9 — User Defined Mode Screen

4.2 Event Test Screen

The purpose of Event Test Screen is to allow a user to simulate an event being generated and cleared in the Unit
Machine. When a key is pressed, an event is created and the event will remain active and the key will be lit. When the
key is pressed again, the event will be cleared and the light will be turned off.

The keys in the group EMOO will generate and clear events associated in Equipment Module 00. The logic to handle
these key presses is in EM00_CMO02_Routines. Similarly, the keys in the group EMO01 will generate and clear events
associated in Equipment Module 01. The logic to handle these key presses is in EM01_CMO02_Routines.

‘ MITSUBISHI ELECTRIC Part 7 —Page 5

AV AUTOMATION, INC.

Custom Solutions Center

Mitsubishi PackML Implementation Templates — Release 4

Part 7: GOT Screens

AW ELECTRIC

4 wiTsuBisHI

Motion
Group
Fault

Low
Infeed
Materials

E-Stop

Remote
Ahort

Motion
Group
Fault

Low
Infeed
Materials

E-Stop

Remote
Abort

Figure 10 — Event Test Screen

Empoweri
Industries

. MITSUBISHI ELECTRIC
A% AUTOMATION, INC.

Part 7—Page 6

Custom Solutions Center

	Mitsuibishi PackML Implementation Users Guide R4 V1.0 - Cover
	Mitsuibishi PackML Implementation Users Guide - Part 1 Overview R4 V1.0
	1 Introduction
	2 PackML Template System Architecture
	3 Mitsubishi PackML Template Key Components
	4 Mitsubishi PackML Template Program Structure
	5 High Level OEM Implementation Steps
	6 Parts of the PackML Implementation Users Guide

	Mitsuibishi PackML Implementation Users Guide - Part 2 Navigator R4 V1.0
	1 Introduction
	2 MELSOFT Navigator Configuration
	2.1 Module Configuration
	2.2 Network Configuration
	2.3 PLC and GOT Programs

	3 System Label Database
	4 Using the System Labels in the GOT Program
	4.1 Establish Route Information
	4.2 Using the System Labels in GOT

	5 Summary

	Mitsubishi PackML Implementation Users Guide - Part 3 PackTags R4 V1.0
	1 Introduction
	2 Key PackTags Design Considerations
	3 PackTags Implementation Considerations
	4 iQ System Configuration
	4.1 Device Area and Label Area
	4.2 Device
	4.3 Built-in Ethernet Port Setting

	5 GX Works3 Label Implementation
	5.1 Command Labels – PackTags_Command
	5.2 Status Labels – PackTags_Status
	5.3 Administrative Labels

	6 Kepware Server Configuration
	6.1 Adding a Channel of Communication
	6.2 Adding Devices

	7 Kepware Tags Implementation
	7.1 Creating the Tags

	8 PackTags Design Template Software Files
	Appendix A
	A.1 Command Tags – Spec to GX Works3 Labels
	A.2 Status Tags – Spec to GX Works3 Labels
	A.3 Admin Tags – Spec to GX Works3 Labels

	Mitsubishi PackML Implementation Users Guide - Part 4 PackML FB R4 V1.0
	1 Introduction
	2 Overview of PackML State and Mode Core Function Blocks
	3 Function Block: PackML_ModeStateManager
	3.1 Description
	3.2 Function Block Operations
	3.3 Function Block Local Variables

	4 Function Block: PackML_ModeStateTimes
	4.1 Description
	4.2 Timer_32Bit_Sec Function Block
	4.3 Function Block Operations
	4.4 Function Block Local Variables

	5 Example Use of the PackML Function Blocks
	5.1 Initialization Example
	5.2 Example of Calling Function Blocks

	Mitsubishi PackML Implementation Users Guide - Part 5 Event Handling R4 V1.0
	1 Introduction
	2 Overview of the Event Handling Philosophy
	3 Overview of the Alarm and Event Handling Function Blocks
	3.1 CM_Event Function Block
	3.2 Event_Manager Function Block
	3.3 Event_Summation Function Block
	3.3.1. Event_SummationBegin Function Block
	3.3.2. Event_SummationEnd Function Block

	3.4 Event_Sort Function Block

	4 Function Block: CM_Event
	4.1 Description
	4.2 Function Block Local Variables
	4.3 Event Related Structured Data Type
	4.3.1. SDT_Event Structured Data Type
	4.3.2. SDT_EventCfg Structured Data Type
	4.3.3. SDT_EventStatus

	4.4 Function Block Operations
	4.4.1. Examples of Alarm Data
	4.4.1.1. AlarmStatus_EM00
	4.4.1.2. AlarmStatus_Event_EM00 (when Event is active)
	4.4.1.3. AlarmStatus_Event_EM00 (when Event becomes inactive)

	5 Function Block: Event_Manager
	5.1 Description
	5.2 Function Block Local Variables
	5.3 Function Block Operations
	5.4 Example of Using CM_Event and Event_Manager FBs

	6 Function Blocks: Event_Summation, Event_SummationBegin, Event_SummationEnd
	6.1 Description
	6.2 Function Block Local Variables
	6.2.1. Even_Summation FB Variables
	6.2.2. Even_SummationBegin FB Variables
	6.2.3. Even_SummationEnd FB Variables

	6.3 Event Summation Related Structured Data Type
	6.3.1. SDT_EventSummation Structured Data Type

	6.4 Function Block Operations

	7 Function Block: Event_Sort
	7.1 Description
	7.2 Function Block Local Variables
	7.3 Function Block Operations

	Mitsubishi PackML Implementation Users Guide - Part 6 Template Project R4 V1.0
	1 Introduction
	2 PackML Template System Hardware Architecture
	3 Mitsubishi PackML Template Project Structure Overview
	4 Mitsubishi PackML Template Project
	4.1 Initial Program Type
	4.2 Scan Program Type
	4.3 Other Program Types

	5 PackML Global Labels
	5.1 PackML_FB Group
	5.1.1. PackMLFB Structured Data Type

	5.2 OEM_Template_PackML_Labels
	5.2.1. PackML_Module_Cmd Structured Data Type

	5.3 OEM_Template_PackML_GOT_Keys
	5.4 OEM_Template_Event_Labels
	5.5 OEM_Template_Event_GOT_Keys

	6 PackML Template Project Program Organization Units
	6.1 Initialization POU
	6.1.1. Equipment Module PackML Initialization POUs
	6.1.2. Unit Machine PackML Initialization POUs

	6.2 Unit Machine Level POU and FBs
	6.2.1. UM_Main
	6.2.2. PackML_Main_FB
	6.2.3. UM_LineComm_FB
	6.2.4. UM_EventControl_FB

	6.3 Equipment Module Level POU and FBs
	6.3.1. EMxx_Main
	6.3.2. EMxx_CMnn_Routine_FB
	6.3.3. EMxx_EventControl_FB
	6.3.4. EMxx_PackML_Cmd_Sum

	7 PLC CPU Parameters and Settings
	7.1 Memory/Device Setting
	7.2 Device Settings
	7.3 Built In Ethernet Port Setting

	Mitsuibishi PackML Implementation Users Guide - Part 7 GOT R4 V1.0
	1 Introduction
	2 PackML Template System Architecture
	3 GOT Communication Channel Configuration
	4 Sample Screens
	4.1 PackML Mode Screens
	4.1.1. Producing Mode Screen
	4.1.2. Maintenance Mode Screen
	4.1.3. Manual Mode Screen
	4.1.4. User Defined Mode 1 / User Defined Mode 2 Screen

	4.2 Event Test Screen

